1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Hoist projections through operators.
//!
//! Projections can be re-introduced in the physical planning stage.
use std::collections::BTreeMap;
use std::mem;
use itertools::zip_eq;
use mz_expr::{AccessStrategy, Id, MirRelationExpr, RECURSION_LIMIT};
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use crate::TransformCtx;
/// Hoist projections through operators.
#[derive(Debug)]
pub struct ProjectionLifting {
recursion_guard: RecursionGuard,
}
impl Default for ProjectionLifting {
fn default() -> ProjectionLifting {
ProjectionLifting {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for ProjectionLifting {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for ProjectionLifting {
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "projection_lifting")
)]
fn transform(
&self,
relation: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), crate::TransformError> {
let result = self.action(relation, &mut BTreeMap::new());
mz_repr::explain::trace_plan(&*relation);
result
}
}
impl ProjectionLifting {
/// Hoist projections through operators.
pub fn action(
&self,
relation: &mut MirRelationExpr,
// Map from names to new get type and projection required at use.
gets: &mut BTreeMap<Id, (mz_repr::RelationType, Vec<usize>)>,
) -> Result<(), crate::TransformError> {
self.checked_recur(|_| {
match relation {
MirRelationExpr::Constant { .. } => Ok(()),
MirRelationExpr::Get {
id,
typ: _,
access_strategy: _,
} => {
if let Some((typ, columns)) = gets.get(id) {
*relation = MirRelationExpr::Get {
id: *id,
typ: typ.clone(),
access_strategy: AccessStrategy::UnknownOrLocal, // (we are not copying it over)
}
.project(columns.clone());
}
Ok(())
}
MirRelationExpr::Let { id, value, body } => {
self.action(value, gets)?;
let id = Id::Local(*id);
if let MirRelationExpr::Project { input, outputs } = &mut **value {
let typ = input.typ();
let prior = gets.insert(id, (typ, outputs.clone()));
assert!(!prior.is_some());
**value = input.take_dangerous();
}
self.action(body, gets)?;
gets.remove(&id);
Ok(())
}
MirRelationExpr::LetRec {
ids,
values,
limits: _,
body,
} => {
let recursive_ids = MirRelationExpr::recursive_ids(ids, values);
for (local_id, value) in zip_eq(ids.iter(), values.iter_mut()) {
self.action(value, gets)?;
if !recursive_ids.contains(local_id) {
if let MirRelationExpr::Project { input, outputs } = value {
let id = Id::Local(*local_id);
let typ = input.typ();
let prior = gets.insert(id, (typ, outputs.clone()));
assert!(!prior.is_some());
*value = input.take_dangerous();
}
}
}
self.action(body, gets)?;
for local_id in ids.iter().filter(|id| !recursive_ids.contains(id)) {
gets.remove(&Id::Local(*local_id));
}
Ok(())
}
MirRelationExpr::Project { input, outputs } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs: inner_outputs,
} = &mut **input
{
for output in outputs.iter_mut() {
*output = inner_outputs[*output];
}
**input = inner.take_dangerous();
}
Ok(())
}
MirRelationExpr::Map { input, scalars } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
// Retain projected columns and scalar columns.
let mut new_outputs = outputs.clone();
let inner_arity = inner.arity();
new_outputs.extend(inner_arity..(inner_arity + scalars.len()));
// Rewrite scalar expressions using inner columns.
for scalar in scalars.iter_mut() {
scalar.permute(&new_outputs);
}
*relation = inner
.take_dangerous()
.map(scalars.clone())
.project(new_outputs);
}
Ok(())
}
MirRelationExpr::FlatMap { input, func, exprs } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
// Retain projected columns and scalar columns.
let mut new_outputs = outputs.clone();
let inner_arity = inner.arity();
new_outputs.extend(inner_arity..(inner_arity + func.output_arity()));
// Rewrite scalar expression using inner columns.
for expr in exprs.iter_mut() {
expr.permute(&new_outputs);
}
*relation = inner
.take_dangerous()
.flat_map(func.clone(), exprs.clone())
.project(new_outputs);
}
Ok(())
}
MirRelationExpr::Filter { input, predicates } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
// Rewrite scalar expressions using inner columns.
for predicate in predicates.iter_mut() {
predicate.permute(outputs);
}
*relation = inner
.take_dangerous()
.filter(predicates.clone())
.project(outputs.clone());
}
Ok(())
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} => {
for input in inputs.iter_mut() {
self.action(input, gets)?;
}
// Track the location of the projected columns in the un-projected join.
let mut projection = Vec::new();
let mut temp_arity = 0;
for join_input in inputs.iter_mut() {
if let MirRelationExpr::Project { input, outputs } = join_input {
for output in outputs.iter() {
projection.push(temp_arity + *output);
}
temp_arity += input.arity();
*join_input = input.take_dangerous();
} else {
let arity = join_input.arity();
projection.extend(temp_arity..(temp_arity + arity));
temp_arity += arity;
}
}
// Don't add the identity permutation as a projection.
if projection.len() != temp_arity || (0..temp_arity).any(|i| projection[i] != i)
{
// Update equivalences and implementation.
for equivalence in equivalences.iter_mut() {
for expr in equivalence {
expr.permute(&projection[..]);
}
}
*implementation = mz_expr::JoinImplementation::Unimplemented;
*relation = relation.take_dangerous().project(projection);
}
Ok(())
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
// Reduce *absorbs* projections, which is amazing!
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
for key in group_key.iter_mut() {
key.permute(outputs);
}
for aggregate in aggregates.iter_mut() {
aggregate.expr.permute(outputs);
}
**input = inner.take_dangerous();
}
Ok(())
}
MirRelationExpr::TopK {
input,
group_key,
order_key,
limit,
offset,
monotonic: _,
expected_group_size,
} => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
for key in group_key.iter_mut() {
*key = outputs[*key];
}
for key in order_key.iter_mut() {
key.column = outputs[key.column];
}
if let Some(limit) = limit.as_mut() {
limit.permute(outputs);
}
*relation = inner
.take_dangerous()
.top_k(
group_key.clone(),
order_key.clone(),
limit.clone(),
offset.clone(),
expected_group_size.clone(),
)
.project(outputs.clone());
}
Ok(())
}
MirRelationExpr::Negate { input } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
*relation = inner.take_dangerous().negate().project(outputs.clone());
}
Ok(())
}
MirRelationExpr::Threshold { input } => {
// We cannot, in general, lift projections out of threshold.
// If we could reason that the input cannot be negative, we
// would be able to lift the projection, but otherwise our
// action on weights need to accumulate the restricted rows.
self.action(input, gets)
}
MirRelationExpr::Union { base, inputs } => {
// We cannot, in general, lift projections out of unions.
self.action(base, gets)?;
for input in &mut *inputs {
self.action(input, gets)?;
}
if let MirRelationExpr::Project {
input: base_input,
outputs: base_outputs,
} = &mut **base
{
let base_typ = base_input.typ();
let mut can_lift = true;
for input in &mut *inputs {
match input {
MirRelationExpr::Project { input, outputs }
if input.typ() == base_typ && outputs == base_outputs => {}
_ => {
can_lift = false;
break;
}
}
}
if can_lift {
let base_outputs = mem::take(base_outputs);
**base = base_input.take_dangerous();
for inp in inputs {
match inp {
MirRelationExpr::Project { input, .. } => {
*inp = input.take_dangerous();
}
_ => unreachable!(),
}
}
*relation = relation.take_dangerous().project(base_outputs);
}
}
Ok(())
}
MirRelationExpr::ArrangeBy { input, keys } => {
self.action(input, gets)?;
if let MirRelationExpr::Project {
input: inner,
outputs,
} = &mut **input
{
for key_set in keys.iter_mut() {
for key in key_set.iter_mut() {
key.permute(outputs);
}
}
*relation = inner
.take_dangerous()
.arrange_by(keys)
.project(outputs.clone());
}
Ok(())
}
}
})
}
}