1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! Zero-copy allocator based on TCP.
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::{VecDeque, HashMap, hash_map::Entry};
use crossbeam_channel::{Sender, Receiver};

use timely_bytes::arc::Bytes;

use crate::networking::MessageHeader;

use crate::{Allocate, Push, Pull};
use crate::allocator::{AllocateBuilder, Exchangeable};
use crate::allocator::canary::Canary;

use super::bytes_exchange::{BytesPull, SendEndpoint, MergeQueue};
use super::push_pull::{Pusher, PullerInner};

/// Builds an instance of a TcpAllocator.
///
/// Builders are required because some of the state in a `TcpAllocator` cannot be sent between
/// threads (specifically, the `Rc<RefCell<_>>` local channels). So, we must package up the state
/// shared between threads here, and then provide a method that will instantiate the non-movable
/// members once in the destination thread.
pub struct TcpBuilder<A: AllocateBuilder> {
    inner:  A,
    index:  usize,                      // number out of peers
    peers:  usize,                      // number of peer allocators.
    futures:   Vec<Receiver<MergeQueue>>,  // to receive queues to each network thread.
    promises:   Vec<Sender<MergeQueue>>,    // to send queues from each network thread.
}

/// Creates a vector of builders, sharing appropriate state.
///
/// `threads` is the number of workers in a single process, `processes` is the
/// total number of processes.
/// The returned tuple contains
/// ```ignore
/// (
///   AllocateBuilder for local threads,
///   info to spawn egress comm threads,
///   info to spawn ingress comm thresds,
/// )
/// ```
pub fn new_vector<A: AllocateBuilder>(
    allocators: Vec<A>,
    my_process: usize,
    processes: usize)
-> (Vec<TcpBuilder<A>>,
    Vec<Vec<Sender<MergeQueue>>>,
    Vec<Vec<Receiver<MergeQueue>>>)
{
    let threads = allocators.len();

    // For queues from worker threads to network threads, and vice versa.
    let (network_promises, worker_futures) = crate::promise_futures(processes-1, threads);
    let (worker_promises, network_futures) = crate::promise_futures(threads, processes-1);

    let builders =
    allocators
        .into_iter()
        .zip(worker_promises)
        .zip(worker_futures)
        .enumerate()
        .map(|(index, ((inner, promises), futures))| {
            TcpBuilder {
                inner,
                index: my_process * threads + index,
                peers: threads * processes,
                promises,
                futures,
            }})
        .collect();

    (builders, network_promises, network_futures)
}

impl<A: AllocateBuilder> TcpBuilder<A> {

    /// Builds a `TcpAllocator`, instantiating `Rc<RefCell<_>>` elements.
    pub fn build(self) -> TcpAllocator<A::Allocator> {

        // Fulfill puller obligations.
        let mut recvs = Vec::with_capacity(self.peers);
        for promise in self.promises.into_iter() {
            let buzzer = crate::buzzer::Buzzer::new();
            let queue = MergeQueue::new(buzzer);
            promise.send(queue.clone()).expect("Failed to send MergeQueue");
            recvs.push(queue.clone());
        }

        // Extract pusher commitments.
        let mut sends = Vec::with_capacity(self.peers);
        for pusher in self.futures.into_iter() {
            let queue = pusher.recv().expect("Failed to receive push queue");
            let sendpoint = SendEndpoint::new(queue);
            sends.push(Rc::new(RefCell::new(sendpoint)));
        }

        // let sends: Vec<_> = self.sends.into_iter().map(
        //     |send| Rc::new(RefCell::new(SendEndpoint::new(send)))).collect();

        TcpAllocator {
            inner: self.inner.build(),
            index: self.index,
            peers: self.peers,
            canaries: Rc::new(RefCell::new(Vec::new())),
            channel_id_bound: None,
            staged: Vec::new(),
            sends,
            recvs,
            to_local: HashMap::new(),
        }
    }
}

/// A TCP-based allocator for inter-process communication.
pub struct TcpAllocator<A: Allocate> {

    inner:      A,                                  // A non-serialized inner allocator for process-local peers.

    index:      usize,                              // number out of peers
    peers:      usize,                              // number of peer allocators (for typed channel allocation).

    staged:     Vec<Bytes>,                         // staging area for incoming Bytes
    canaries:   Rc<RefCell<Vec<usize>>>,

    channel_id_bound: Option<usize>,

    // sending, receiving, and responding to binary buffers.
    sends:      Vec<Rc<RefCell<SendEndpoint<MergeQueue>>>>,     // sends[x] -> goes to process x.
    recvs:      Vec<MergeQueue>,                                // recvs[x] <- from process x.
    to_local:   HashMap<usize, Rc<RefCell<VecDeque<Bytes>>>>,   // to worker-local typed pullers.
}

impl<A: Allocate> Allocate for TcpAllocator<A> {
    fn index(&self) -> usize { self.index }
    fn peers(&self) -> usize { self.peers }
    fn allocate<T: Exchangeable>(&mut self, identifier: usize) -> (Vec<Box<dyn Push<T>>>, Box<dyn Pull<T>>) {

        // Assume and enforce in-order identifier allocation.
        if let Some(bound) = self.channel_id_bound {
            assert!(bound < identifier);
        }
        self.channel_id_bound = Some(identifier);

        // Result list of boxed pushers.
        let mut pushes = Vec::<Box<dyn Push<T>>>::new();

        // Inner exchange allocations.
        let inner_peers = self.inner.peers();
        let (mut inner_sends, inner_recv) = self.inner.allocate(identifier);

        for target_index in 0 .. self.peers() {

            // TODO: crappy place to hardcode this rule.
            let mut process_id = target_index / inner_peers;

            if process_id == self.index / inner_peers {
                pushes.push(inner_sends.remove(0));
            }
            else {
                // message header template.
                let header = MessageHeader {
                    channel:    identifier,
                    source:     self.index,
                    target:     target_index,
                    length:     0,
                    seqno:      0,
                };

                // create, box, and stash new process_binary pusher.
                if process_id > self.index / inner_peers { process_id -= 1; }
                pushes.push(Box::new(Pusher::new(header, self.sends[process_id].clone())));
            }
        }

        let channel =
        self.to_local
            .entry(identifier)
            .or_insert_with(|| Rc::new(RefCell::new(VecDeque::new())))
            .clone();

        use crate::allocator::counters::Puller as CountPuller;
        let canary = Canary::new(identifier, self.canaries.clone());
        let puller = Box::new(CountPuller::new(PullerInner::new(inner_recv, channel, canary), identifier, self.events().clone()));

        (pushes, puller, )
    }

    // Perform preparatory work, most likely reading binary buffers from self.recv.
    #[inline(never)]
    fn receive(&mut self) {

        // Check for channels whose `Puller` has been dropped.
        let mut canaries = self.canaries.borrow_mut();
        for dropped_channel in canaries.drain(..) {
            let _dropped =
            self.to_local
                .remove(&dropped_channel)
                .expect("non-existent channel dropped");
            // Borrowed channels may be non-empty, if the dataflow was forcibly
            // dropped. The contract is that if a dataflow is dropped, all other
            // workers will drop the dataflow too, without blocking indefinitely
            // on events from it.
            // assert!(dropped.borrow().is_empty());
        }
        ::std::mem::drop(canaries);

        self.inner.receive();

        for recv in self.recvs.iter_mut() {
            recv.drain_into(&mut self.staged);
        }

        let mut events = self.inner.events().borrow_mut();

        for mut bytes in self.staged.drain(..) {

            // We expect that `bytes` contains an integral number of messages.
            // No splitting occurs across allocations.
            while bytes.len() > 0 {

                if let Some(header) = MessageHeader::try_read(&mut bytes[..]) {

                    // Get the header and payload, ditch the header.
                    let mut peel = bytes.extract_to(header.required_bytes());
                    let _ = peel.extract_to(::std::mem::size_of::<MessageHeader>());

                    // Increment message count for channel.
                    // Safe to do this even if the channel has been dropped.
                    events.push(header.channel);

                    // Ensure that a queue exists.
                    match self.to_local.entry(header.channel) {
                        Entry::Vacant(entry) => {
                            // We may receive data before allocating, and shouldn't block.
                            if self.channel_id_bound.map(|b| b < header.channel).unwrap_or(true) {
                                entry.insert(Rc::new(RefCell::new(VecDeque::new())))
                                    .borrow_mut()
                                    .push_back(peel);
                            }
                        }
                        Entry::Occupied(mut entry) => {
                            entry.get_mut().borrow_mut().push_back(peel);
                        }
                    }
                }
                else {
                    println!("failed to read full header!");
                }
            }
        }
    }

    // Perform postparatory work, most likely sending un-full binary buffers.
    fn release(&mut self) {
        // Publish outgoing byte ledgers.
        for send in self.sends.iter_mut() {
            send.borrow_mut().publish();
        }

        // OPTIONAL: Tattle on channels sitting on borrowed data.
        // OPTIONAL: Perhaps copy borrowed data into owned allocation.
        // for (index, list) in self.to_local.iter() {
        //     let len = list.borrow_mut().len();
        //     if len > 0 {
        //         eprintln!("Warning: worker {}, undrained channel[{}].len() = {}", self.index, index, len);
        //     }
        // }
    }
    fn events(&self) -> &Rc<RefCell<Vec<usize>>> {
        self.inner.events()
    }
    fn await_events(&self, duration: Option<std::time::Duration>) {
        self.inner.await_events(duration);
    }
}