1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Transformations based on pulling information about individual columns from sources.

use std::collections::BTreeMap;

use itertools::{zip_eq, Itertools};
use mz_expr::visit::Visit;
use mz_expr::JoinImplementation::IndexedFilter;
use mz_expr::{
    func, EvalError, LetRecLimit, MirRelationExpr, MirScalarExpr, UnaryFunc, RECURSION_LIMIT,
};
use mz_ore::cast::CastFrom;
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_ore::{assert_none, soft_panic_or_log};
use mz_repr::{ColumnType, Datum, RelationType, Row, ScalarType};

use crate::{TransformCtx, TransformError};

/// Harvest and act upon per-column information.
#[derive(Debug)]
pub struct ColumnKnowledge {
    recursion_guard: RecursionGuard,
}

impl Default for ColumnKnowledge {
    fn default() -> ColumnKnowledge {
        ColumnKnowledge {
            recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
        }
    }
}

impl CheckedRecursion for ColumnKnowledge {
    fn recursion_guard(&self) -> &RecursionGuard {
        &self.recursion_guard
    }
}

impl crate::Transform for ColumnKnowledge {
    /// Transforms an expression through accumulated knowledge.
    #[mz_ore::instrument(
        target = "optimizer",
        level = "debug",
        fields(path.segment = "column_knowledge")
    )]
    fn transform(
        &self,
        expr: &mut MirRelationExpr,
        _: &mut TransformCtx,
    ) -> Result<(), TransformError> {
        let mut knowledge_stack = Vec::<DatumKnowledge>::new();
        let result = self
            .harvest(expr, &mut BTreeMap::new(), &mut knowledge_stack)
            .map(|_| ());
        mz_repr::explain::trace_plan(&*expr);
        result
    }
}

impl ColumnKnowledge {
    /// Harvest per-column knowledge.
    ///
    /// `knowledge_stack` is a pre-allocated vector but is expected not to contain any elements.
    fn harvest(
        &self,
        expr: &mut MirRelationExpr,
        knowledge: &mut BTreeMap<mz_expr::Id, Vec<DatumKnowledge>>,
        knowledge_stack: &mut Vec<DatumKnowledge>,
    ) -> Result<Vec<DatumKnowledge>, TransformError> {
        self.checked_recur(|_| {
            let result = match expr {
                MirRelationExpr::ArrangeBy { input, .. } => {
                    self.harvest(input, knowledge, knowledge_stack)
                }
                MirRelationExpr::Get { id, typ, .. } => {
                    Ok(knowledge.get(id).cloned().unwrap_or_else(|| {
                        typ.column_types.iter().map(DatumKnowledge::from).collect()
                    }))
                }
                MirRelationExpr::Constant { rows, typ } => {
                    // TODO: handle multi-row cases with some constant columns.
                    if let Ok([(row, _diff)]) = rows.as_deref() {
                        let knowledge = std::iter::zip(row.iter(), typ.column_types.iter())
                            .map(DatumKnowledge::from)
                            .collect();
                        Ok(knowledge)
                    } else {
                        Ok(typ.column_types.iter().map(DatumKnowledge::from).collect())
                    }
                }
                MirRelationExpr::Let { id, value, body } => {
                    let value_knowledge = self.harvest(value, knowledge, knowledge_stack)?;
                    let prior_knowledge =
                        knowledge.insert(mz_expr::Id::Local(id.clone()), value_knowledge);
                    let body_knowledge = self.harvest(body, knowledge, knowledge_stack)?;
                    knowledge.remove(&mz_expr::Id::Local(id.clone()));
                    if let Some(prior_knowledge) = prior_knowledge {
                        knowledge.insert(mz_expr::Id::Local(id.clone()), prior_knowledge);
                    }
                    Ok(body_knowledge)
                }
                MirRelationExpr::LetRec {
                    ids,
                    values,
                    limits,
                    body,
                } => {
                    // Set knowledge[i][j] = DatumKnowledge::bottom() for each
                    // column j and CTE i. This corresponds to the normal
                    // evaluation semantics where each recursive CTE is
                    // initialized to the empty collection.
                    for (id, value) in zip_eq(ids.iter(), values.iter()) {
                        let id = mz_expr::Id::Local(id.clone());
                        let knowledge_new = vec![DatumKnowledge::bottom(); value.arity()];
                        let knowledge_old = knowledge.insert(id, knowledge_new);
                        assert_none!(knowledge_old);
                    }

                    // Sum up the arity of all ids in the enclosing LetRec node.
                    let let_rec_arity = ids.iter().fold(0, |acc, id| {
                        let id = mz_expr::Id::Local(id.clone());
                        acc + u64::cast_from(knowledge[&id].len())
                    });

                    // Sequentially union knowledge[i][j] with the result of
                    // descending into a clone of values[i]. Repeat until one of
                    // the following conditions is met:
                    //
                    // 1. The knowledge bindings have stabilized at a fixpoint.
                    // 2. No fixpoint was found after `max_iterations`. If this
                    //    is the case reset the knowledge vectors for all
                    //    recursive CTEs to DatumKnowledge::top().
                    // 3. We reach the user-specified recursion limit of any of the bindings.
                    //    In this case, we also give up similarly to 2., because we don't want to
                    //    complicate things with handling different limits per binding.
                    let min_max_iter = LetRecLimit::min_max_iter(limits);
                    let max_iterations = 100;
                    let mut curr_iteration = 0;
                    loop {
                        // Check for conditions (2) and (3).
                        if curr_iteration >= max_iterations
                            || min_max_iter
                                .map(|min_max_iter| curr_iteration >= min_max_iter)
                                .unwrap_or(false)
                        {
                            if curr_iteration > 3 * let_rec_arity {
                                soft_panic_or_log!(
                                    "LetRec loop in ColumnKnowledge has not converged in 3 * |{}|",
                                    let_rec_arity
                                );
                            }

                            for (id, value) in zip_eq(ids.iter(), values.iter()) {
                                let id = mz_expr::Id::Local(id.clone());
                                let knowledge_new = vec![DatumKnowledge::top(); value.arity()];
                                knowledge.insert(id, knowledge_new);
                            }
                            break;
                        }

                        // Check for condition (1).
                        let mut change = false;
                        for (id, mut value) in zip_eq(ids.iter(), values.iter().cloned()) {
                            let id = mz_expr::Id::Local(id.clone());
                            let value = &mut value;
                            let next_knowledge = self.harvest(value, knowledge, knowledge_stack)?;
                            let curr_knowledge = knowledge.get_mut(&id).unwrap();
                            for (curr, next) in zip_eq(curr_knowledge.iter_mut(), next_knowledge) {
                                let prev = curr.clone();
                                curr.join_assign(&next);
                                change |= prev != *curr;
                            }
                        }
                        if !change {
                            break;
                        }

                        curr_iteration += 1;
                    }

                    // Descend into the values with the inferred knowledge.
                    for value in values.iter_mut() {
                        self.harvest(value, knowledge, knowledge_stack)?;
                    }

                    // Descend and return the knowledge from the body.
                    let body_knowledge = self.harvest(body, knowledge, knowledge_stack)?;

                    // Remove shadowed bindings. This is good hygiene, as
                    // otherwise with nested LetRec blocks the `loop { ... }`
                    // above will carry inner LetRec IDs across outer LetRec
                    // iterations. As a consequence, the "no shadowing"
                    // assertion at the beginning of this block will fail at the
                    // inner LetRec for the second outer LetRec iteration.
                    for id in ids.iter() {
                        let id = mz_expr::Id::Local(id.clone());
                        knowledge.remove(&id);
                    }

                    Ok(body_knowledge)
                }
                MirRelationExpr::Project { input, outputs } => {
                    let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    Ok(outputs
                        .iter()
                        .map(|i| input_knowledge[*i].clone())
                        .collect())
                }
                MirRelationExpr::Map { input, scalars } => {
                    let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    let mut column_types = input.typ().column_types;
                    for scalar in scalars.iter_mut() {
                        input_knowledge.push(optimize(
                            scalar,
                            &column_types,
                            &input_knowledge[..],
                            knowledge_stack,
                        )?);
                        column_types.push(scalar.typ(&column_types));
                    }
                    Ok(input_knowledge)
                }
                MirRelationExpr::FlatMap { input, func, exprs } => {
                    let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    let input_typ = input.typ();
                    for expr in exprs {
                        optimize(
                            expr,
                            &input_typ.column_types,
                            &input_knowledge[..],
                            knowledge_stack,
                        )?;
                    }
                    let func_typ = func.output_type();
                    input_knowledge.extend(func_typ.column_types.iter().map(DatumKnowledge::from));
                    Ok(input_knowledge)
                }
                MirRelationExpr::Filter { input, predicates } => {
                    let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    let input_typ = input.typ();
                    for predicate in predicates.iter_mut() {
                        optimize(
                            predicate,
                            &input_typ.column_types,
                            &input_knowledge[..],
                            knowledge_stack,
                        )?;
                    }
                    // If any predicate tests a column for equality, truth, or is_null, we learn stuff.
                    for predicate in predicates.iter() {
                        // Equality tests allow us to unify the column knowledge of each input.
                        if let MirScalarExpr::CallBinary {
                            func: mz_expr::BinaryFunc::Eq,
                            expr1,
                            expr2,
                        } = predicate
                        {
                            // Collect knowledge about the inputs (for columns and literals).
                            let mut knowledge = DatumKnowledge::top();
                            if let MirScalarExpr::Column(c) = &**expr1 {
                                knowledge.meet_assign(&input_knowledge[*c]);
                            }
                            if let MirScalarExpr::Column(c) = &**expr2 {
                                knowledge.meet_assign(&input_knowledge[*c]);
                            }

                            // Absorb literal knowledge about columns.
                            if let MirScalarExpr::Literal(..) = &**expr1 {
                                knowledge.meet_assign(&DatumKnowledge::from(&**expr1));
                            }
                            if let MirScalarExpr::Literal(..) = &**expr2 {
                                knowledge.meet_assign(&DatumKnowledge::from(&**expr2));
                            }

                            // Write back unified knowledge to each column.
                            if let MirScalarExpr::Column(c) = &**expr1 {
                                input_knowledge[*c].meet_assign(&knowledge);
                            }
                            if let MirScalarExpr::Column(c) = &**expr2 {
                                input_knowledge[*c].meet_assign(&knowledge);
                            }
                        }
                        if let MirScalarExpr::CallUnary {
                            func: UnaryFunc::Not(func::Not),
                            expr,
                        } = predicate
                        {
                            if let MirScalarExpr::CallUnary {
                                func: UnaryFunc::IsNull(func::IsNull),
                                expr,
                            } = &**expr
                            {
                                if let MirScalarExpr::Column(c) = &**expr {
                                    input_knowledge[*c].meet_assign(&DatumKnowledge::any(false));
                                }
                            }
                        }
                    }

                    Ok(input_knowledge)
                }
                MirRelationExpr::Join {
                    inputs,
                    equivalences,
                    implementation,
                    ..
                } => {
                    // Aggregate column knowledge from each input into one `Vec`.
                    let mut knowledges = Vec::new();
                    for input in inputs.iter_mut() {
                        for mut knowledge in self.harvest(input, knowledge, knowledge_stack)? {
                            // Do not propagate error literals beyond join inputs, since that may result
                            // in them being propagated to other inputs of the join and evaluated when
                            // they should not.
                            if let DatumKnowledge::Lit { value: Err(_), .. } = knowledge {
                                knowledge.join_assign(&DatumKnowledge::any(false));
                            }
                            knowledges.push(knowledge);
                        }
                    }

                    // This only aggregates the column types of each input, not the
                    // keys of the inputs. It is unnecessary to aggregate the keys
                    // of the inputs since input keys are unnecessary for reducing
                    // `MirScalarExpr`s.
                    let folded_inputs_typ =
                        inputs.iter().fold(RelationType::empty(), |mut typ, input| {
                            typ.column_types.append(&mut input.typ().column_types);
                            typ
                        });

                    for equivalence in equivalences.iter_mut() {
                        let mut knowledge = DatumKnowledge::top();

                        // We can produce composite knowledge for everything in the equivalence class.
                        for expr in equivalence.iter_mut() {
                            if !matches!(implementation, IndexedFilter(..)) {
                                optimize(
                                    expr,
                                    &folded_inputs_typ.column_types,
                                    &knowledges,
                                    knowledge_stack,
                                )?;
                            }
                            if let MirScalarExpr::Column(c) = expr {
                                knowledge.meet_assign(&knowledges[*c]);
                            }
                            if let MirScalarExpr::Literal(..) = expr {
                                knowledge.meet_assign(&DatumKnowledge::from(&*expr));
                            }
                        }
                        for expr in equivalence.iter_mut() {
                            if let MirScalarExpr::Column(c) = expr {
                                knowledges[*c] = knowledge.clone();
                            }
                        }
                    }

                    Ok(knowledges)
                }
                MirRelationExpr::Reduce {
                    input,
                    group_key,
                    aggregates,
                    monotonic: _,
                    expected_group_size: _,
                } => {
                    let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    let input_typ = input.typ();
                    let mut output = group_key
                        .iter_mut()
                        .map(|k| {
                            optimize(
                                k,
                                &input_typ.column_types,
                                &input_knowledge[..],
                                knowledge_stack,
                            )
                        })
                        .collect::<Result<Vec<_>, _>>()?;
                    for aggregate in aggregates.iter_mut() {
                        use mz_expr::AggregateFunc;
                        let knowledge = optimize(
                            &mut aggregate.expr,
                            &input_typ.column_types,
                            &input_knowledge[..],
                            knowledge_stack,
                        )?;
                        // This could be improved.
                        let knowledge = match aggregate.func {
                            AggregateFunc::MaxInt16
                            | AggregateFunc::MaxInt32
                            | AggregateFunc::MaxInt64
                            | AggregateFunc::MaxUInt16
                            | AggregateFunc::MaxUInt32
                            | AggregateFunc::MaxUInt64
                            | AggregateFunc::MaxMzTimestamp
                            | AggregateFunc::MaxFloat32
                            | AggregateFunc::MaxFloat64
                            | AggregateFunc::MaxBool
                            | AggregateFunc::MaxString
                            | AggregateFunc::MaxDate
                            | AggregateFunc::MaxTimestamp
                            | AggregateFunc::MaxTimestampTz
                            | AggregateFunc::MinInt16
                            | AggregateFunc::MinInt32
                            | AggregateFunc::MinInt64
                            | AggregateFunc::MinUInt16
                            | AggregateFunc::MinUInt32
                            | AggregateFunc::MinUInt64
                            | AggregateFunc::MinMzTimestamp
                            | AggregateFunc::MinFloat32
                            | AggregateFunc::MinFloat64
                            | AggregateFunc::MinBool
                            | AggregateFunc::MinString
                            | AggregateFunc::MinDate
                            | AggregateFunc::MinTimestamp
                            | AggregateFunc::MinTimestampTz
                            | AggregateFunc::Any
                            | AggregateFunc::All => {
                                // These methods propagate constant values exactly.
                                knowledge
                            }
                            AggregateFunc::Count => DatumKnowledge::any(false),
                            _ => {
                                // The remaining aggregates are non-null if
                                // their inputs are non-null. This is correct
                                // because in Mir~ we reduce an empty collection
                                // to an empty collection (in Hir~ the result
                                // often is singleton null collection).
                                DatumKnowledge::any(knowledge.nullable())
                            }
                        };
                        output.push(knowledge);
                    }
                    Ok(output)
                }
                MirRelationExpr::TopK { input, limit, .. } => {
                    let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
                    if let Some(limit) = limit.as_mut() {
                        optimize(
                            limit,
                            &input.typ().column_types,
                            &input_knowledge[..],
                            knowledge_stack,
                        )?;
                    }
                    Ok(input_knowledge)
                }
                MirRelationExpr::Negate { input } => {
                    self.harvest(input, knowledge, knowledge_stack)
                }
                MirRelationExpr::Threshold { input } => {
                    self.harvest(input, knowledge, knowledge_stack)
                }
                MirRelationExpr::Union { base, inputs } => {
                    let mut know = self.harvest(base, knowledge, knowledge_stack)?;
                    for input in inputs {
                        know = know
                            .into_iter()
                            .zip_eq(self.harvest(input, knowledge, knowledge_stack)?)
                            .map(|(mut k1, k2)| {
                                k1.join_assign(&k2);
                                k1
                            })
                            .collect();
                    }
                    Ok(know)
                }
            }?;

            // println!("# Plan");
            // println!("{}", expr.pretty());
            // println!("# Knowledge");
            // print_knowledge_vec(&result);
            // println!("---");

            Ok(result)
        })
    }
}

/// Information about a specific column.
///
/// The values should form a [complete lattice].
///
/// [complete lattice]: https://en.wikipedia.org/wiki/Complete_lattice
#[derive(Clone, Debug, PartialEq, Eq)]
enum DatumKnowledge {
    // Any possible value, optionally known to be NOT NULL.
    Any {
        nullable: bool,
    },
    // A known literal value of a specific type.
    Lit {
        value: Result<mz_repr::Row, EvalError>,
        typ: ScalarType,
    },
    // A value that cannot exist.
    Nothing,
}

impl From<&MirScalarExpr> for DatumKnowledge {
    fn from(expr: &MirScalarExpr) -> Self {
        if let MirScalarExpr::Literal(l, t) = expr {
            let value = l.clone();
            let typ = t.scalar_type.clone();
            Self::Lit { value, typ }
        } else {
            Self::top()
        }
    }
}

impl From<(Datum<'_>, &ColumnType)> for DatumKnowledge {
    fn from((d, t): (Datum<'_>, &ColumnType)) -> Self {
        let value = Ok(Row::pack_slice(&[d.clone()]));
        let typ = t.scalar_type.clone();
        Self::Lit { value, typ }
    }
}

impl From<&ColumnType> for DatumKnowledge {
    fn from(typ: &ColumnType) -> Self {
        let nullable = typ.nullable;
        Self::Any { nullable }
    }
}

impl DatumKnowledge {
    /// The most general possible knowledge (the top of the complete lattice).
    fn top() -> Self {
        Self::Any { nullable: true }
    }

    /// The strictest possible knowledge (the bottom of the complete lattice).
    #[allow(dead_code)]
    fn bottom() -> Self {
        Self::Nothing
    }

    /// Create a [`DatumKnowledge::Any`] instance with the given nullable flag.
    fn any(nullable: bool) -> Self {
        DatumKnowledge::Any { nullable }
    }

    /// Unions (weakens) the possible states of a column.
    fn join_assign(&mut self, other: &Self) {
        use DatumKnowledge::*;

        // Each of the following `if` statements handles the cases marked with
        // `x` of the (self x other) cross product (depicted as a rows x cols
        // table where Self::bottom() is the UL and Self::top() the LR corner).
        // Cases that are already handled are marked with `+` and cases that are
        // yet to be handled marked with `-`.
        //
        // The order of handling (crossing out) of cases ensures that
        // `*.clone()` is not called unless necessary.
        //
        // The final case after the ifs can assert that both sides are Lit
        // variants.

        // x - - - : Nothing
        // x - - - : Lit { _, _ }
        // x - - - : Any { false }
        // x x x x : Any { true }
        if crate::any![
            matches!(self, Any { nullable: true }),
            matches!(other, Nothing),
        ] {
            // Nothing to do.
        }
        // + x x x : Nothing
        // + - - x : Lit { _, _ }
        // + - - x : Any { false }
        // + + + + : Any { true }
        else if crate::any![
            matches!(self, Nothing),
            matches!(other, Any { nullable: true }),
        ] {
            *self = other.clone();
        }
        // + + + + : Nothing
        // + - - + : Lit { _, _ }
        // + x x + : Any { false }
        // + + + + : Any { true }
        else if matches!(self, Any { nullable: false }) {
            if !other.nullable() {
                // Nothing to do.
            } else {
                *self = Self::top() // other: Lit { null, _ }
            }
            // Nothing to do.
        }
        // + + + + : Nothing
        // + - x + : Lit { _, _ }
        // + + + + : Any { false }
        // + + + + : Any { true }
        else if matches!(other, Any { nullable: false }) {
            if !self.nullable() {
                *self = other.clone();
            } else {
                *self = Self::top() // other: Lit { null, _ }
            }
        }
        // + + + + : Nothing
        // + x + + : Lit { _, _ }
        // + + + + : Any { false }
        // + + + + : Any { true }
        else {
            let Lit {
                value: s_val,
                typ: s_typ,
            } = self
            else {
                unreachable!();
            };
            let Lit {
                value: o_val,
                typ: o_typ,
            } = other
            else {
                unreachable!();
            };

            if !s_typ.base_eq(o_typ) {
                ::tracing::error!("Undefined join of non-equal base types {s_typ:?} != {o_typ:?}");
                *self = Self::top();
            } else if s_val != o_val {
                let nullable = self.nullable() || other.nullable();
                *self = Any { nullable }
            } else if s_typ != o_typ {
                // Same value but different concrete types - strip all modifiers!
                // This is identical to what ColumnType::union is doing.
                *s_typ = s_typ.without_modifiers();
            } else {
                // Value and type coincide - do nothing!
            }
        }
    }

    /// Intersects (strengthens) the possible states of a column.
    fn meet_assign(&mut self, other: &Self) {
        use DatumKnowledge::*;

        // Each of the following `if` statements handles the cases marked with
        // `x` of the (self x other) cross product (depicted as a rows x cols
        // table where Self::bottom() is the UL and Self::top() the LR corner).
        // Cases that are already handled are marked with `+` and cases that are
        // yet to be handled marked with `-`.
        //
        // The order of handling (crossing out) of cases ensures that
        // `*.clone()` is not called unless necessary.
        //
        // The final case after the ifs can assert that both sides are Lit
        // variants.

        // x x x x : Nothing
        // - - - x : Lit { _, _ }
        // - - - x : Any { false }
        // - - - x : Any { true }
        if crate::any![
            matches!(self, Nothing),
            matches!(other, Any { nullable: true }),
        ] {
            // Nothing to do.
        }
        // + + + + : Nothing
        // x - - + : Lit { _, _ }
        // x - - + : Any { false }
        // x x x + : Any { true }
        else if crate::any![
            matches!(self, Any { nullable: true }),
            matches!(other, Nothing),
        ] {
            *self = other.clone();
        }
        // + + + + : Nothing
        // + - - + : Lit { _, _ }
        // + x x + : Any { false }
        // + + + + : Any { true }
        else if matches!(self, Any { nullable: false }) {
            match other {
                Any { .. } => {
                    // Nothing to do.
                }
                Lit { .. } => {
                    if other.nullable() {
                        *self = Nothing; // other: Lit { null, _ }
                    } else {
                        *self = other.clone();
                    }
                }
                Nothing => unreachable!(),
            }
        }
        // + + + + : Nothing
        // + - x + : Lit { _, _ }
        // + + + + : Any { false }
        // + + + + : Any { true }
        else if matches!(other, Any { nullable: false }) {
            if self.nullable() {
                *self = Nothing // self: Lit { null, _ }
            }
        }
        // + + + + : Nothing
        // + x + + : Lit { _, _ }
        // + + + + : Any { false }
        // + + + + : Any { true }
        else {
            let Lit {
                value: s_val,
                typ: s_typ,
            } = self
            else {
                unreachable!();
            };
            let Lit {
                value: o_val,
                typ: o_typ,
            } = other
            else {
                unreachable!();
            };

            if !s_typ.base_eq(o_typ) {
                soft_panic_or_log!("Undefined meet of non-equal base types {s_typ:?} != {o_typ:?}");
                *self = Self::top(); // this really should be Nothing
            } else if s_val != o_val {
                *self = Nothing;
            } else if s_typ != o_typ {
                // Same value but different concrete types - strip all
                // modifiers! We should probably pick the more specific of the
                // two types if they are ordered or return Nothing otherwise.
                *s_typ = s_typ.without_modifiers();
            } else {
                // Value and type coincide - do nothing!
            }
        }
    }

    fn nullable(&self) -> bool {
        match self {
            DatumKnowledge::Any { nullable } => *nullable,
            DatumKnowledge::Lit { value, .. } => match value {
                Ok(value) => value.iter().next().unwrap().is_null(),
                Err(_) => false,
            },
            DatumKnowledge::Nothing => false,
        }
    }
}

/// Attempts to optimize
///
/// `knowledge_stack` is a pre-allocated vector but is expected not to contain any elements.
fn optimize(
    expr: &mut MirScalarExpr,
    column_types: &[ColumnType],
    column_knowledge: &[DatumKnowledge],
    knowledge_stack: &mut Vec<DatumKnowledge>,
) -> Result<DatumKnowledge, TransformError> {
    // Storage for `DatumKnowledge` being propagated up through the
    // `MirScalarExpr`. When a node is visited, pop off as many `DatumKnowledge`
    // as the number of children the node has, and then push the
    // `DatumKnowledge` corresponding to the node back onto the stack.
    // Post-order traversal means that if a node has `n` children, the top `n`
    // `DatumKnowledge` in the stack are the `DatumKnowledge` corresponding to
    // the children.
    assert!(knowledge_stack.is_empty());
    #[allow(deprecated)]
    expr.visit_mut_pre_post(
        &mut |e| {
            // We should not eagerly memoize `if` branches that might not be taken.
            // TODO: Memoize expressions in the intersection of `then` and `els`.
            if let MirScalarExpr::If { then, els, .. } = e {
                Some(vec![then, els])
            } else {
                None
            }
        },
        &mut |e| {
            let result = match e {
                MirScalarExpr::Column(index) => {
                    let index = *index;
                    if let DatumKnowledge::Lit { value, typ } = &column_knowledge[index] {
                        let nullable = column_knowledge[index].nullable();
                        *e = MirScalarExpr::Literal(value.clone(), typ.clone().nullable(nullable));
                    }
                    column_knowledge[index].clone()
                }
                MirScalarExpr::Literal(_, _) | MirScalarExpr::CallUnmaterializable(_) => {
                    DatumKnowledge::from(&*e)
                }
                MirScalarExpr::CallUnary { func, expr: _ } => {
                    let knowledge = knowledge_stack.pop().unwrap();
                    if matches!(&knowledge, DatumKnowledge::Lit { .. }) {
                        e.reduce(column_types);
                    } else if func == &UnaryFunc::IsNull(func::IsNull) && !knowledge.nullable() {
                        *e = MirScalarExpr::literal_false();
                    };
                    DatumKnowledge::from(&*e)
                }
                MirScalarExpr::CallBinary {
                    func: _,
                    expr1: _,
                    expr2: _,
                } => {
                    let knowledge2 = knowledge_stack.pop().unwrap();
                    let knowledge1 = knowledge_stack.pop().unwrap();
                    if crate::any![
                        matches!(knowledge1, DatumKnowledge::Lit { .. }),
                        matches!(knowledge2, DatumKnowledge::Lit { .. }),
                    ] {
                        e.reduce(column_types);
                    }
                    DatumKnowledge::from(&*e)
                }
                MirScalarExpr::CallVariadic { func: _, exprs } => {
                    // Drain the last `exprs.len()` knowledge, and reduce if any is `Lit`.
                    assert!(knowledge_stack.len() >= exprs.len());
                    if knowledge_stack
                        .drain(knowledge_stack.len() - exprs.len()..)
                        .any(|k| matches!(k, DatumKnowledge::Lit { .. }))
                    {
                        e.reduce(column_types);
                    }
                    DatumKnowledge::from(&*e)
                }
                MirScalarExpr::If {
                    cond: _,
                    then: _,
                    els: _,
                } => {
                    // `cond` has been left un-optimized, as we should not remove the conditional
                    // nature of the evaluation based on column knowledge: the resulting
                    // expression could then move down past a filter or join that provided
                    // the guarantees, and would become wrong.
                    //
                    // Instead, each of the branches have been optimized, and we
                    // can union the states of their columns.
                    let know2 = knowledge_stack.pop().unwrap();
                    let mut know1 = knowledge_stack.pop().unwrap();
                    know1.join_assign(&know2);
                    know1
                }
            };
            knowledge_stack.push(result);
        },
    )?;
    let knowledge_datum = knowledge_stack.pop();
    assert!(knowledge_stack.is_empty());
    knowledge_datum.ok_or_else(|| {
        TransformError::Internal(String::from("unexpectedly empty stack in optimize"))
    })
}

#[allow(dead_code)] // keep debugging method around
fn print_knowledge_map<'a>(
    knowledge: &BTreeMap<mz_expr::Id, Vec<DatumKnowledge>>,
    ids: impl Iterator<Item = &'a mz_expr::LocalId>,
) {
    for id in ids {
        let id = mz_expr::Id::Local(id.clone());
        for (i, k) in knowledge.get(&id).unwrap().iter().enumerate() {
            println!("{id}.#{i}: {k:?}");
        }
    }
    println!("");
}

#[allow(dead_code)] // keep debugging method around
fn print_knowledge_vec(knowledge: &Vec<DatumKnowledge>) {
    for (i, k) in knowledge.iter().enumerate() {
        println!("#{i}: {k:?}");
    }
    println!("");
}