1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Transformations based on pulling information about individual columns from sources.
use std::collections::BTreeMap;
use itertools::{zip_eq, Itertools};
use mz_expr::visit::Visit;
use mz_expr::JoinImplementation::IndexedFilter;
use mz_expr::{
func, EvalError, LetRecLimit, MirRelationExpr, MirScalarExpr, UnaryFunc, RECURSION_LIMIT,
};
use mz_ore::cast::CastFrom;
use mz_ore::stack::{CheckedRecursion, RecursionGuard};
use mz_ore::{assert_none, soft_panic_or_log};
use mz_repr::{ColumnType, Datum, RelationType, Row, ScalarType};
use crate::{TransformCtx, TransformError};
/// Harvest and act upon per-column information.
#[derive(Debug)]
pub struct ColumnKnowledge {
recursion_guard: RecursionGuard,
}
impl Default for ColumnKnowledge {
fn default() -> ColumnKnowledge {
ColumnKnowledge {
recursion_guard: RecursionGuard::with_limit(RECURSION_LIMIT),
}
}
}
impl CheckedRecursion for ColumnKnowledge {
fn recursion_guard(&self) -> &RecursionGuard {
&self.recursion_guard
}
}
impl crate::Transform for ColumnKnowledge {
/// Transforms an expression through accumulated knowledge.
#[mz_ore::instrument(
target = "optimizer",
level = "debug",
fields(path.segment = "column_knowledge")
)]
fn transform(
&self,
expr: &mut MirRelationExpr,
_: &mut TransformCtx,
) -> Result<(), TransformError> {
let mut knowledge_stack = Vec::<DatumKnowledge>::new();
let result = self
.harvest(expr, &mut BTreeMap::new(), &mut knowledge_stack)
.map(|_| ());
mz_repr::explain::trace_plan(&*expr);
result
}
}
impl ColumnKnowledge {
/// Harvest per-column knowledge.
///
/// `knowledge_stack` is a pre-allocated vector but is expected not to contain any elements.
fn harvest(
&self,
expr: &mut MirRelationExpr,
knowledge: &mut BTreeMap<mz_expr::Id, Vec<DatumKnowledge>>,
knowledge_stack: &mut Vec<DatumKnowledge>,
) -> Result<Vec<DatumKnowledge>, TransformError> {
self.checked_recur(|_| {
let result = match expr {
MirRelationExpr::ArrangeBy { input, .. } => {
self.harvest(input, knowledge, knowledge_stack)
}
MirRelationExpr::Get { id, typ, .. } => {
Ok(knowledge.get(id).cloned().unwrap_or_else(|| {
typ.column_types.iter().map(DatumKnowledge::from).collect()
}))
}
MirRelationExpr::Constant { rows, typ } => {
// TODO: handle multi-row cases with some constant columns.
if let Ok([(row, _diff)]) = rows.as_deref() {
let knowledge = std::iter::zip(row.iter(), typ.column_types.iter())
.map(DatumKnowledge::from)
.collect();
Ok(knowledge)
} else {
Ok(typ.column_types.iter().map(DatumKnowledge::from).collect())
}
}
MirRelationExpr::Let { id, value, body } => {
let value_knowledge = self.harvest(value, knowledge, knowledge_stack)?;
let prior_knowledge =
knowledge.insert(mz_expr::Id::Local(id.clone()), value_knowledge);
let body_knowledge = self.harvest(body, knowledge, knowledge_stack)?;
knowledge.remove(&mz_expr::Id::Local(id.clone()));
if let Some(prior_knowledge) = prior_knowledge {
knowledge.insert(mz_expr::Id::Local(id.clone()), prior_knowledge);
}
Ok(body_knowledge)
}
MirRelationExpr::LetRec {
ids,
values,
limits,
body,
} => {
// Set knowledge[i][j] = DatumKnowledge::bottom() for each
// column j and CTE i. This corresponds to the normal
// evaluation semantics where each recursive CTE is
// initialized to the empty collection.
for (id, value) in zip_eq(ids.iter(), values.iter()) {
let id = mz_expr::Id::Local(id.clone());
let knowledge_new = vec![DatumKnowledge::bottom(); value.arity()];
let knowledge_old = knowledge.insert(id, knowledge_new);
assert_none!(knowledge_old);
}
// Sum up the arity of all ids in the enclosing LetRec node.
let let_rec_arity = ids.iter().fold(0, |acc, id| {
let id = mz_expr::Id::Local(id.clone());
acc + u64::cast_from(knowledge[&id].len())
});
// Sequentially union knowledge[i][j] with the result of
// descending into a clone of values[i]. Repeat until one of
// the following conditions is met:
//
// 1. The knowledge bindings have stabilized at a fixpoint.
// 2. No fixpoint was found after `max_iterations`. If this
// is the case reset the knowledge vectors for all
// recursive CTEs to DatumKnowledge::top().
// 3. We reach the user-specified recursion limit of any of the bindings.
// In this case, we also give up similarly to 2., because we don't want to
// complicate things with handling different limits per binding.
let min_max_iter = LetRecLimit::min_max_iter(limits);
let max_iterations = 100;
let mut curr_iteration = 0;
loop {
// Check for conditions (2) and (3).
if curr_iteration >= max_iterations
|| min_max_iter
.map(|min_max_iter| curr_iteration >= min_max_iter)
.unwrap_or(false)
{
if curr_iteration > 3 * let_rec_arity {
soft_panic_or_log!(
"LetRec loop in ColumnKnowledge has not converged in 3 * |{}|",
let_rec_arity
);
}
for (id, value) in zip_eq(ids.iter(), values.iter()) {
let id = mz_expr::Id::Local(id.clone());
let knowledge_new = vec![DatumKnowledge::top(); value.arity()];
knowledge.insert(id, knowledge_new);
}
break;
}
// Check for condition (1).
let mut change = false;
for (id, mut value) in zip_eq(ids.iter(), values.iter().cloned()) {
let id = mz_expr::Id::Local(id.clone());
let value = &mut value;
let next_knowledge = self.harvest(value, knowledge, knowledge_stack)?;
let curr_knowledge = knowledge.get_mut(&id).unwrap();
for (curr, next) in zip_eq(curr_knowledge.iter_mut(), next_knowledge) {
let prev = curr.clone();
curr.join_assign(&next);
change |= prev != *curr;
}
}
if !change {
break;
}
curr_iteration += 1;
}
// Descend into the values with the inferred knowledge.
for value in values.iter_mut() {
self.harvest(value, knowledge, knowledge_stack)?;
}
// Descend and return the knowledge from the body.
let body_knowledge = self.harvest(body, knowledge, knowledge_stack)?;
// Remove shadowed bindings. This is good hygiene, as
// otherwise with nested LetRec blocks the `loop { ... }`
// above will carry inner LetRec IDs across outer LetRec
// iterations. As a consequence, the "no shadowing"
// assertion at the beginning of this block will fail at the
// inner LetRec for the second outer LetRec iteration.
for id in ids.iter() {
let id = mz_expr::Id::Local(id.clone());
knowledge.remove(&id);
}
Ok(body_knowledge)
}
MirRelationExpr::Project { input, outputs } => {
let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
Ok(outputs
.iter()
.map(|i| input_knowledge[*i].clone())
.collect())
}
MirRelationExpr::Map { input, scalars } => {
let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
let mut column_types = input.typ().column_types;
for scalar in scalars.iter_mut() {
input_knowledge.push(optimize(
scalar,
&column_types,
&input_knowledge[..],
knowledge_stack,
)?);
column_types.push(scalar.typ(&column_types));
}
Ok(input_knowledge)
}
MirRelationExpr::FlatMap { input, func, exprs } => {
let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
let input_typ = input.typ();
for expr in exprs {
optimize(
expr,
&input_typ.column_types,
&input_knowledge[..],
knowledge_stack,
)?;
}
let func_typ = func.output_type();
input_knowledge.extend(func_typ.column_types.iter().map(DatumKnowledge::from));
Ok(input_knowledge)
}
MirRelationExpr::Filter { input, predicates } => {
let mut input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
let input_typ = input.typ();
for predicate in predicates.iter_mut() {
optimize(
predicate,
&input_typ.column_types,
&input_knowledge[..],
knowledge_stack,
)?;
}
// If any predicate tests a column for equality, truth, or is_null, we learn stuff.
for predicate in predicates.iter() {
// Equality tests allow us to unify the column knowledge of each input.
if let MirScalarExpr::CallBinary {
func: mz_expr::BinaryFunc::Eq,
expr1,
expr2,
} = predicate
{
// Collect knowledge about the inputs (for columns and literals).
let mut knowledge = DatumKnowledge::top();
if let MirScalarExpr::Column(c) = &**expr1 {
knowledge.meet_assign(&input_knowledge[*c]);
}
if let MirScalarExpr::Column(c) = &**expr2 {
knowledge.meet_assign(&input_knowledge[*c]);
}
// Absorb literal knowledge about columns.
if let MirScalarExpr::Literal(..) = &**expr1 {
knowledge.meet_assign(&DatumKnowledge::from(&**expr1));
}
if let MirScalarExpr::Literal(..) = &**expr2 {
knowledge.meet_assign(&DatumKnowledge::from(&**expr2));
}
// Write back unified knowledge to each column.
if let MirScalarExpr::Column(c) = &**expr1 {
input_knowledge[*c].meet_assign(&knowledge);
}
if let MirScalarExpr::Column(c) = &**expr2 {
input_knowledge[*c].meet_assign(&knowledge);
}
}
if let MirScalarExpr::CallUnary {
func: UnaryFunc::Not(func::Not),
expr,
} = predicate
{
if let MirScalarExpr::CallUnary {
func: UnaryFunc::IsNull(func::IsNull),
expr,
} = &**expr
{
if let MirScalarExpr::Column(c) = &**expr {
input_knowledge[*c].meet_assign(&DatumKnowledge::any(false));
}
}
}
}
Ok(input_knowledge)
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation,
..
} => {
// Aggregate column knowledge from each input into one `Vec`.
let mut knowledges = Vec::new();
for input in inputs.iter_mut() {
for mut knowledge in self.harvest(input, knowledge, knowledge_stack)? {
// Do not propagate error literals beyond join inputs, since that may result
// in them being propagated to other inputs of the join and evaluated when
// they should not.
if let DatumKnowledge::Lit { value: Err(_), .. } = knowledge {
knowledge.join_assign(&DatumKnowledge::any(false));
}
knowledges.push(knowledge);
}
}
// This only aggregates the column types of each input, not the
// keys of the inputs. It is unnecessary to aggregate the keys
// of the inputs since input keys are unnecessary for reducing
// `MirScalarExpr`s.
let folded_inputs_typ =
inputs.iter().fold(RelationType::empty(), |mut typ, input| {
typ.column_types.append(&mut input.typ().column_types);
typ
});
for equivalence in equivalences.iter_mut() {
let mut knowledge = DatumKnowledge::top();
// We can produce composite knowledge for everything in the equivalence class.
for expr in equivalence.iter_mut() {
if !matches!(implementation, IndexedFilter(..)) {
optimize(
expr,
&folded_inputs_typ.column_types,
&knowledges,
knowledge_stack,
)?;
}
if let MirScalarExpr::Column(c) = expr {
knowledge.meet_assign(&knowledges[*c]);
}
if let MirScalarExpr::Literal(..) = expr {
knowledge.meet_assign(&DatumKnowledge::from(&*expr));
}
}
for expr in equivalence.iter_mut() {
if let MirScalarExpr::Column(c) = expr {
knowledges[*c] = knowledge.clone();
}
}
}
Ok(knowledges)
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic: _,
expected_group_size: _,
} => {
let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
let input_typ = input.typ();
let mut output = group_key
.iter_mut()
.map(|k| {
optimize(
k,
&input_typ.column_types,
&input_knowledge[..],
knowledge_stack,
)
})
.collect::<Result<Vec<_>, _>>()?;
for aggregate in aggregates.iter_mut() {
use mz_expr::AggregateFunc;
let knowledge = optimize(
&mut aggregate.expr,
&input_typ.column_types,
&input_knowledge[..],
knowledge_stack,
)?;
// This could be improved.
let knowledge = match aggregate.func {
AggregateFunc::MaxInt16
| AggregateFunc::MaxInt32
| AggregateFunc::MaxInt64
| AggregateFunc::MaxUInt16
| AggregateFunc::MaxUInt32
| AggregateFunc::MaxUInt64
| AggregateFunc::MaxMzTimestamp
| AggregateFunc::MaxFloat32
| AggregateFunc::MaxFloat64
| AggregateFunc::MaxBool
| AggregateFunc::MaxString
| AggregateFunc::MaxDate
| AggregateFunc::MaxTimestamp
| AggregateFunc::MaxTimestampTz
| AggregateFunc::MinInt16
| AggregateFunc::MinInt32
| AggregateFunc::MinInt64
| AggregateFunc::MinUInt16
| AggregateFunc::MinUInt32
| AggregateFunc::MinUInt64
| AggregateFunc::MinMzTimestamp
| AggregateFunc::MinFloat32
| AggregateFunc::MinFloat64
| AggregateFunc::MinBool
| AggregateFunc::MinString
| AggregateFunc::MinDate
| AggregateFunc::MinTimestamp
| AggregateFunc::MinTimestampTz
| AggregateFunc::Any
| AggregateFunc::All => {
// These methods propagate constant values exactly.
knowledge
}
AggregateFunc::Count => DatumKnowledge::any(false),
_ => {
// The remaining aggregates are non-null if
// their inputs are non-null. This is correct
// because in Mir~ we reduce an empty collection
// to an empty collection (in Hir~ the result
// often is singleton null collection).
DatumKnowledge::any(knowledge.nullable())
}
};
output.push(knowledge);
}
Ok(output)
}
MirRelationExpr::TopK { input, limit, .. } => {
let input_knowledge = self.harvest(input, knowledge, knowledge_stack)?;
if let Some(limit) = limit.as_mut() {
optimize(
limit,
&input.typ().column_types,
&input_knowledge[..],
knowledge_stack,
)?;
}
Ok(input_knowledge)
}
MirRelationExpr::Negate { input } => {
self.harvest(input, knowledge, knowledge_stack)
}
MirRelationExpr::Threshold { input } => {
self.harvest(input, knowledge, knowledge_stack)
}
MirRelationExpr::Union { base, inputs } => {
let mut know = self.harvest(base, knowledge, knowledge_stack)?;
for input in inputs {
know = know
.into_iter()
.zip_eq(self.harvest(input, knowledge, knowledge_stack)?)
.map(|(mut k1, k2)| {
k1.join_assign(&k2);
k1
})
.collect();
}
Ok(know)
}
}?;
// println!("# Plan");
// println!("{}", expr.pretty());
// println!("# Knowledge");
// print_knowledge_vec(&result);
// println!("---");
Ok(result)
})
}
}
/// Information about a specific column.
///
/// The values should form a [complete lattice].
///
/// [complete lattice]: https://en.wikipedia.org/wiki/Complete_lattice
#[derive(Clone, Debug, PartialEq, Eq)]
enum DatumKnowledge {
// Any possible value, optionally known to be NOT NULL.
Any {
nullable: bool,
},
// A known literal value of a specific type.
Lit {
value: Result<mz_repr::Row, EvalError>,
typ: ScalarType,
},
// A value that cannot exist.
Nothing,
}
impl From<&MirScalarExpr> for DatumKnowledge {
fn from(expr: &MirScalarExpr) -> Self {
if let MirScalarExpr::Literal(l, t) = expr {
let value = l.clone();
let typ = t.scalar_type.clone();
Self::Lit { value, typ }
} else {
Self::top()
}
}
}
impl From<(Datum<'_>, &ColumnType)> for DatumKnowledge {
fn from((d, t): (Datum<'_>, &ColumnType)) -> Self {
let value = Ok(Row::pack_slice(&[d.clone()]));
let typ = t.scalar_type.clone();
Self::Lit { value, typ }
}
}
impl From<&ColumnType> for DatumKnowledge {
fn from(typ: &ColumnType) -> Self {
let nullable = typ.nullable;
Self::Any { nullable }
}
}
impl DatumKnowledge {
/// The most general possible knowledge (the top of the complete lattice).
fn top() -> Self {
Self::Any { nullable: true }
}
/// The strictest possible knowledge (the bottom of the complete lattice).
#[allow(dead_code)]
fn bottom() -> Self {
Self::Nothing
}
/// Create a [`DatumKnowledge::Any`] instance with the given nullable flag.
fn any(nullable: bool) -> Self {
DatumKnowledge::Any { nullable }
}
/// Unions (weakens) the possible states of a column.
fn join_assign(&mut self, other: &Self) {
use DatumKnowledge::*;
// Each of the following `if` statements handles the cases marked with
// `x` of the (self x other) cross product (depicted as a rows x cols
// table where Self::bottom() is the UL and Self::top() the LR corner).
// Cases that are already handled are marked with `+` and cases that are
// yet to be handled marked with `-`.
//
// The order of handling (crossing out) of cases ensures that
// `*.clone()` is not called unless necessary.
//
// The final case after the ifs can assert that both sides are Lit
// variants.
// x - - - : Nothing
// x - - - : Lit { _, _ }
// x - - - : Any { false }
// x x x x : Any { true }
if crate::any![
matches!(self, Any { nullable: true }),
matches!(other, Nothing),
] {
// Nothing to do.
}
// + x x x : Nothing
// + - - x : Lit { _, _ }
// + - - x : Any { false }
// + + + + : Any { true }
else if crate::any![
matches!(self, Nothing),
matches!(other, Any { nullable: true }),
] {
*self = other.clone();
}
// + + + + : Nothing
// + - - + : Lit { _, _ }
// + x x + : Any { false }
// + + + + : Any { true }
else if matches!(self, Any { nullable: false }) {
if !other.nullable() {
// Nothing to do.
} else {
*self = Self::top() // other: Lit { null, _ }
}
// Nothing to do.
}
// + + + + : Nothing
// + - x + : Lit { _, _ }
// + + + + : Any { false }
// + + + + : Any { true }
else if matches!(other, Any { nullable: false }) {
if !self.nullable() {
*self = other.clone();
} else {
*self = Self::top() // other: Lit { null, _ }
}
}
// + + + + : Nothing
// + x + + : Lit { _, _ }
// + + + + : Any { false }
// + + + + : Any { true }
else {
let Lit {
value: s_val,
typ: s_typ,
} = self
else {
unreachable!();
};
let Lit {
value: o_val,
typ: o_typ,
} = other
else {
unreachable!();
};
if !s_typ.base_eq(o_typ) {
::tracing::error!("Undefined join of non-equal base types {s_typ:?} != {o_typ:?}");
*self = Self::top();
} else if s_val != o_val {
let nullable = self.nullable() || other.nullable();
*self = Any { nullable }
} else if s_typ != o_typ {
// Same value but different concrete types - strip all modifiers!
// This is identical to what ColumnType::union is doing.
*s_typ = s_typ.without_modifiers();
} else {
// Value and type coincide - do nothing!
}
}
}
/// Intersects (strengthens) the possible states of a column.
fn meet_assign(&mut self, other: &Self) {
use DatumKnowledge::*;
// Each of the following `if` statements handles the cases marked with
// `x` of the (self x other) cross product (depicted as a rows x cols
// table where Self::bottom() is the UL and Self::top() the LR corner).
// Cases that are already handled are marked with `+` and cases that are
// yet to be handled marked with `-`.
//
// The order of handling (crossing out) of cases ensures that
// `*.clone()` is not called unless necessary.
//
// The final case after the ifs can assert that both sides are Lit
// variants.
// x x x x : Nothing
// - - - x : Lit { _, _ }
// - - - x : Any { false }
// - - - x : Any { true }
if crate::any![
matches!(self, Nothing),
matches!(other, Any { nullable: true }),
] {
// Nothing to do.
}
// + + + + : Nothing
// x - - + : Lit { _, _ }
// x - - + : Any { false }
// x x x + : Any { true }
else if crate::any![
matches!(self, Any { nullable: true }),
matches!(other, Nothing),
] {
*self = other.clone();
}
// + + + + : Nothing
// + - - + : Lit { _, _ }
// + x x + : Any { false }
// + + + + : Any { true }
else if matches!(self, Any { nullable: false }) {
match other {
Any { .. } => {
// Nothing to do.
}
Lit { .. } => {
if other.nullable() {
*self = Nothing; // other: Lit { null, _ }
} else {
*self = other.clone();
}
}
Nothing => unreachable!(),
}
}
// + + + + : Nothing
// + - x + : Lit { _, _ }
// + + + + : Any { false }
// + + + + : Any { true }
else if matches!(other, Any { nullable: false }) {
if self.nullable() {
*self = Nothing // self: Lit { null, _ }
}
}
// + + + + : Nothing
// + x + + : Lit { _, _ }
// + + + + : Any { false }
// + + + + : Any { true }
else {
let Lit {
value: s_val,
typ: s_typ,
} = self
else {
unreachable!();
};
let Lit {
value: o_val,
typ: o_typ,
} = other
else {
unreachable!();
};
if !s_typ.base_eq(o_typ) {
soft_panic_or_log!("Undefined meet of non-equal base types {s_typ:?} != {o_typ:?}");
*self = Self::top(); // this really should be Nothing
} else if s_val != o_val {
*self = Nothing;
} else if s_typ != o_typ {
// Same value but different concrete types - strip all
// modifiers! We should probably pick the more specific of the
// two types if they are ordered or return Nothing otherwise.
*s_typ = s_typ.without_modifiers();
} else {
// Value and type coincide - do nothing!
}
}
}
fn nullable(&self) -> bool {
match self {
DatumKnowledge::Any { nullable } => *nullable,
DatumKnowledge::Lit { value, .. } => match value {
Ok(value) => value.iter().next().unwrap().is_null(),
Err(_) => false,
},
DatumKnowledge::Nothing => false,
}
}
}
/// Attempts to optimize
///
/// `knowledge_stack` is a pre-allocated vector but is expected not to contain any elements.
fn optimize(
expr: &mut MirScalarExpr,
column_types: &[ColumnType],
column_knowledge: &[DatumKnowledge],
knowledge_stack: &mut Vec<DatumKnowledge>,
) -> Result<DatumKnowledge, TransformError> {
// Storage for `DatumKnowledge` being propagated up through the
// `MirScalarExpr`. When a node is visited, pop off as many `DatumKnowledge`
// as the number of children the node has, and then push the
// `DatumKnowledge` corresponding to the node back onto the stack.
// Post-order traversal means that if a node has `n` children, the top `n`
// `DatumKnowledge` in the stack are the `DatumKnowledge` corresponding to
// the children.
assert!(knowledge_stack.is_empty());
#[allow(deprecated)]
expr.visit_mut_pre_post(
&mut |e| {
// We should not eagerly memoize `if` branches that might not be taken.
// TODO: Memoize expressions in the intersection of `then` and `els`.
if let MirScalarExpr::If { then, els, .. } = e {
Some(vec![then, els])
} else {
None
}
},
&mut |e| {
let result = match e {
MirScalarExpr::Column(index) => {
let index = *index;
if let DatumKnowledge::Lit { value, typ } = &column_knowledge[index] {
let nullable = column_knowledge[index].nullable();
*e = MirScalarExpr::Literal(value.clone(), typ.clone().nullable(nullable));
}
column_knowledge[index].clone()
}
MirScalarExpr::Literal(_, _) | MirScalarExpr::CallUnmaterializable(_) => {
DatumKnowledge::from(&*e)
}
MirScalarExpr::CallUnary { func, expr: _ } => {
let knowledge = knowledge_stack.pop().unwrap();
if matches!(&knowledge, DatumKnowledge::Lit { .. }) {
e.reduce(column_types);
} else if func == &UnaryFunc::IsNull(func::IsNull) && !knowledge.nullable() {
*e = MirScalarExpr::literal_false();
};
DatumKnowledge::from(&*e)
}
MirScalarExpr::CallBinary {
func: _,
expr1: _,
expr2: _,
} => {
let knowledge2 = knowledge_stack.pop().unwrap();
let knowledge1 = knowledge_stack.pop().unwrap();
if crate::any![
matches!(knowledge1, DatumKnowledge::Lit { .. }),
matches!(knowledge2, DatumKnowledge::Lit { .. }),
] {
e.reduce(column_types);
}
DatumKnowledge::from(&*e)
}
MirScalarExpr::CallVariadic { func: _, exprs } => {
// Drain the last `exprs.len()` knowledge, and reduce if any is `Lit`.
assert!(knowledge_stack.len() >= exprs.len());
if knowledge_stack
.drain(knowledge_stack.len() - exprs.len()..)
.any(|k| matches!(k, DatumKnowledge::Lit { .. }))
{
e.reduce(column_types);
}
DatumKnowledge::from(&*e)
}
MirScalarExpr::If {
cond: _,
then: _,
els: _,
} => {
// `cond` has been left un-optimized, as we should not remove the conditional
// nature of the evaluation based on column knowledge: the resulting
// expression could then move down past a filter or join that provided
// the guarantees, and would become wrong.
//
// Instead, each of the branches have been optimized, and we
// can union the states of their columns.
let know2 = knowledge_stack.pop().unwrap();
let mut know1 = knowledge_stack.pop().unwrap();
know1.join_assign(&know2);
know1
}
};
knowledge_stack.push(result);
},
)?;
let knowledge_datum = knowledge_stack.pop();
assert!(knowledge_stack.is_empty());
knowledge_datum.ok_or_else(|| {
TransformError::Internal(String::from("unexpectedly empty stack in optimize"))
})
}
#[allow(dead_code)] // keep debugging method around
fn print_knowledge_map<'a>(
knowledge: &BTreeMap<mz_expr::Id, Vec<DatumKnowledge>>,
ids: impl Iterator<Item = &'a mz_expr::LocalId>,
) {
for id in ids {
let id = mz_expr::Id::Local(id.clone());
for (i, k) in knowledge.get(&id).unwrap().iter().enumerate() {
println!("{id}.#{i}: {k:?}");
}
}
println!("");
}
#[allow(dead_code)] // keep debugging method around
fn print_knowledge_vec(knowledge: &Vec<DatumKnowledge>) {
for (i, k) in knowledge.iter().enumerate() {
println!("#{i}: {k:?}");
}
println!("");
}