differential_dataflow/operators/arrange/arrangement.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
//! Arranges a collection into a re-usable trace structure.
//!
//! The `arrange` operator applies to a differential dataflow `Collection` and returns an `Arranged`
//! structure, provides access to both an indexed form of accepted updates as well as a stream of
//! batches of newly arranged updates.
//!
//! Several operators (`join`, `reduce`, and `count`, among others) are implemented against `Arranged`,
//! and can be applied directly to arranged data instead of the collection. Internally, the operators
//! will borrow the shared state, and listen on the timely stream for shared batches of data. The
//! resources to index the collection---communication, computation, and memory---are spent only once,
//! and only one copy of the index needs to be maintained as the collection changes.
//!
//! The arranged collection is stored in a trace, whose append-only operation means that it is safe to
//! share between the single `arrange` writer and multiple readers. Each reader is expected to interrogate
//! the trace only at times for which it knows the trace is complete, as indicated by the frontiers on its
//! incoming channels. Failing to do this is "safe" in the Rust sense of memory safety, but the reader may
//! see ill-defined data at times for which the trace is not complete. (All current implementations
//! commit only completed data to the trace).
use timely::dataflow::operators::{Enter, Map};
use timely::order::PartialOrder;
use timely::dataflow::{Scope, Stream, StreamCore};
use timely::dataflow::operators::generic::Operator;
use timely::dataflow::channels::pact::{ParallelizationContract, Pipeline, Exchange};
use timely::progress::Timestamp;
use timely::progress::Antichain;
use timely::dataflow::operators::Capability;
use crate::{Data, ExchangeData, Collection, AsCollection, Hashable};
use crate::difference::Semigroup;
use crate::lattice::Lattice;
use crate::trace::{self, Trace, TraceReader, Batch, BatchReader, Batcher, Builder, Cursor};
use crate::trace::implementations::{KeySpine, ValSpine};
use trace::wrappers::enter::{TraceEnter, BatchEnter,};
use trace::wrappers::enter_at::TraceEnter as TraceEnterAt;
use trace::wrappers::enter_at::BatchEnter as BatchEnterAt;
use trace::wrappers::filter::{TraceFilter, BatchFilter};
use super::TraceAgent;
/// An arranged collection of `(K,V)` values.
///
/// An `Arranged` allows multiple differential operators to share the resources (communication,
/// computation, memory) required to produce and maintain an indexed representation of a collection.
pub struct Arranged<G: Scope, Tr>
where
G::Timestamp: Lattice+Ord,
Tr: TraceReader+Clone,
{
/// A stream containing arranged updates.
///
/// This stream contains the same batches of updates the trace itself accepts, so there should
/// be no additional overhead to receiving these records. The batches can be navigated just as
/// the batches in the trace, by key and by value.
pub stream: Stream<G, Tr::Batch>,
/// A shared trace, updated by the `Arrange` operator and readable by others.
pub trace: Tr,
// TODO : We might have an `Option<Collection<G, (K, V)>>` here, which `as_collection` sets and
// returns when invoked, so as to not duplicate work with multiple calls to `as_collection`.
}
impl<G, Tr> Clone for Arranged<G, Tr>
where
G: Scope<Timestamp=Tr::Time>,
Tr: TraceReader + Clone,
{
fn clone(&self) -> Self {
Arranged {
stream: self.stream.clone(),
trace: self.trace.clone(),
}
}
}
use ::timely::dataflow::scopes::Child;
use ::timely::progress::timestamp::Refines;
use timely::Container;
use timely::container::PushInto;
impl<G, Tr> Arranged<G, Tr>
where
G: Scope<Timestamp=Tr::Time>,
Tr: TraceReader + Clone,
{
/// Brings an arranged collection into a nested scope.
///
/// This method produces a proxy trace handle that uses the same backing data, but acts as if the timestamps
/// have all been extended with an additional coordinate with the default value. The resulting collection does
/// not vary with the new timestamp coordinate.
pub fn enter<'a, TInner>(&self, child: &Child<'a, G, TInner>)
-> Arranged<Child<'a, G, TInner>, TraceEnter<Tr, TInner>>
where
TInner: Refines<G::Timestamp>+Lattice+Timestamp+Clone,
{
Arranged {
stream: self.stream.enter(child).map(|bw| BatchEnter::make_from(bw)),
trace: TraceEnter::make_from(self.trace.clone()),
}
}
/// Brings an arranged collection into a nested region.
///
/// This method only applies to *regions*, which are subscopes with the same timestamp
/// as their containing scope. In this case, the trace type does not need to change.
pub fn enter_region<'a>(&self, child: &Child<'a, G, G::Timestamp>)
-> Arranged<Child<'a, G, G::Timestamp>, Tr> {
Arranged {
stream: self.stream.enter(child),
trace: self.trace.clone(),
}
}
/// Brings an arranged collection into a nested scope.
///
/// This method produces a proxy trace handle that uses the same backing data, but acts as if the timestamps
/// have all been extended with an additional coordinate with the default value. The resulting collection does
/// not vary with the new timestamp coordinate.
pub fn enter_at<'a, TInner, F, P>(&self, child: &Child<'a, G, TInner>, logic: F, prior: P)
-> Arranged<Child<'a, G, TInner>, TraceEnterAt<Tr, TInner, F, P>>
where
TInner: Refines<G::Timestamp>+Lattice+Timestamp+Clone+'static,
F: FnMut(Tr::Key<'_>, Tr::Val<'_>, Tr::TimeGat<'_>)->TInner+Clone+'static,
P: FnMut(&TInner)->Tr::Time+Clone+'static,
{
let logic1 = logic.clone();
let logic2 = logic.clone();
Arranged {
trace: TraceEnterAt::make_from(self.trace.clone(), logic1, prior),
stream: self.stream.enter(child).map(move |bw| BatchEnterAt::make_from(bw, logic2.clone())),
}
}
/// Filters an arranged collection.
///
/// This method produces a new arrangement backed by the same shared
/// arrangement as `self`, paired with user-specified logic that can
/// filter by key and value. The resulting collection is restricted
/// to the keys and values that return true under the user predicate.
///
/// # Examples
///
/// ```
/// use differential_dataflow::input::Input;
/// use differential_dataflow::operators::arrange::ArrangeByKey;
///
/// ::timely::example(|scope| {
///
/// let arranged =
/// scope.new_collection_from(0 .. 10).1
/// .map(|x| (x, x+1))
/// .arrange_by_key();
///
/// arranged
/// .filter(|k,v| k == v)
/// .as_collection(|k,v| (*k,*v))
/// .assert_empty();
/// });
/// ```
pub fn filter<F>(&self, logic: F)
-> Arranged<G, TraceFilter<Tr, F>>
where
F: FnMut(Tr::Key<'_>, Tr::Val<'_>)->bool+Clone+'static,
{
let logic1 = logic.clone();
let logic2 = logic.clone();
Arranged {
trace: TraceFilter::make_from(self.trace.clone(), logic1),
stream: self.stream.map(move |bw| BatchFilter::make_from(bw, logic2.clone())),
}
}
/// Flattens the stream into a `Collection`.
///
/// The underlying `Stream<G, BatchWrapper<T::Batch>>` is a much more efficient way to access the data,
/// and this method should only be used when the data need to be transformed or exchanged, rather than
/// supplied as arguments to an operator using the same key-value structure.
pub fn as_collection<D: Data, L>(&self, mut logic: L) -> Collection<G, D, Tr::Diff>
where
L: FnMut(Tr::Key<'_>, Tr::Val<'_>) -> D+'static,
{
self.flat_map_ref(move |key, val| Some(logic(key,val)))
}
/// Extracts elements from an arrangement as a collection.
///
/// The supplied logic may produce an iterator over output values, allowing either
/// filtering or flat mapping as part of the extraction.
pub fn flat_map_ref<I, L>(&self, logic: L) -> Collection<G, I::Item, Tr::Diff>
where
I: IntoIterator,
I::Item: Data,
L: FnMut(Tr::Key<'_>, Tr::Val<'_>) -> I+'static,
{
Self::flat_map_batches(&self.stream, logic)
}
/// Extracts elements from a stream of batches as a collection.
///
/// The supplied logic may produce an iterator over output values, allowing either
/// filtering or flat mapping as part of the extraction.
///
/// This method exists for streams of batches without the corresponding arrangement.
/// If you have the arrangement, its `flat_map_ref` method is equivalent to this.
pub fn flat_map_batches<I, L>(stream: &Stream<G, Tr::Batch>, mut logic: L) -> Collection<G, I::Item, Tr::Diff>
where
I: IntoIterator,
I::Item: Data,
L: FnMut(Tr::Key<'_>, Tr::Val<'_>) -> I+'static,
{
stream.unary(Pipeline, "AsCollection", move |_,_| move |input, output| {
input.for_each(|time, data| {
let mut session = output.session(&time);
for wrapper in data.iter() {
let batch = &wrapper;
let mut cursor = batch.cursor();
while let Some(key) = cursor.get_key(batch) {
while let Some(val) = cursor.get_val(batch) {
for datum in logic(key, val) {
cursor.map_times(batch, |time, diff| {
session.give((datum.clone(), time.into_owned(), diff.into_owned()));
});
}
cursor.step_val(batch);
}
cursor.step_key(batch);
}
}
});
})
.as_collection()
}
}
use crate::difference::Multiply;
// Direct join implementations.
impl<G, T1> Arranged<G, T1>
where
G: Scope<Timestamp=T1::Time>,
T1: TraceReader + Clone + 'static,
{
/// A direct implementation of the `JoinCore::join_core` method.
pub fn join_core<T2,I,L>(&self, other: &Arranged<G,T2>, mut result: L) -> Collection<G,I::Item,<T1::Diff as Multiply<T2::Diff>>::Output>
where
T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>,Time=T1::Time>+Clone+'static,
T1::Diff: Multiply<T2::Diff>,
<T1::Diff as Multiply<T2::Diff>>::Output: Semigroup+'static,
I: IntoIterator,
I::Item: Data,
L: FnMut(T1::Key<'_>,T1::Val<'_>,T2::Val<'_>)->I+'static
{
let result = move |k: T1::Key<'_>, v1: T1::Val<'_>, v2: T2::Val<'_>, t: &G::Timestamp, r1: &T1::Diff, r2: &T2::Diff| {
let t = t.clone();
let r = (r1.clone()).multiply(r2);
result(k, v1, v2).into_iter().map(move |d| (d, t.clone(), r.clone()))
};
self.join_core_internal_unsafe(other, result)
}
/// A direct implementation of the `JoinCore::join_core_internal_unsafe` method.
pub fn join_core_internal_unsafe<T2,I,L,D,ROut> (&self, other: &Arranged<G,T2>, mut result: L) -> Collection<G,D,ROut>
where
T2: for<'a> TraceReader<Key<'a>=T1::Key<'a>, Time=T1::Time>+Clone+'static,
D: Data,
ROut: Semigroup+'static,
I: IntoIterator<Item=(D, G::Timestamp, ROut)>,
L: FnMut(T1::Key<'_>, T1::Val<'_>,T2::Val<'_>,&G::Timestamp,&T1::Diff,&T2::Diff)->I+'static,
{
use crate::operators::join::join_traces;
join_traces::<_, _, _, _, crate::consolidation::ConsolidatingContainerBuilder<_>>(
self,
other,
move |k, v1, v2, t, d1, d2, c| {
for datum in result(k, v1, v2, t, d1, d2) {
c.give(datum);
}
}
)
.as_collection()
}
}
use crate::trace::cursor::IntoOwned;
// Direct reduce implementations.
use crate::difference::Abelian;
impl<G, T1> Arranged<G, T1>
where
G: Scope<Timestamp = T1::Time>,
T1: TraceReader + Clone + 'static,
{
/// A direct implementation of `ReduceCore::reduce_abelian`.
pub fn reduce_abelian<L, K, V, T2>(&self, name: &str, mut logic: L) -> Arranged<G, TraceAgent<T2>>
where
for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
T2: for<'a> Trace<Key<'a>= T1::Key<'a>, Time=T1::Time>+'static,
K: Ord + 'static,
V: Data,
for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
T2::Diff: Abelian,
T2::Batch: Batch,
<T2::Builder as Builder>::Input: Container + PushInto<((K, V), T2::Time, T2::Diff)>,
L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(V, T2::Diff)>)+'static,
{
self.reduce_core::<_,K,V,T2>(name, move |key, input, output, change| {
if !input.is_empty() {
logic(key, input, change);
}
change.extend(output.drain(..).map(|(x,mut d)| { d.negate(); (x, d) }));
crate::consolidation::consolidate(change);
})
}
/// A direct implementation of `ReduceCore::reduce_core`.
pub fn reduce_core<L, K, V, T2>(&self, name: &str, logic: L) -> Arranged<G, TraceAgent<T2>>
where
for<'a> T1::Key<'a>: IntoOwned<'a, Owned = K>,
T2: for<'a> Trace<Key<'a>=T1::Key<'a>, Time=T1::Time>+'static,
K: Ord + 'static,
V: Data,
for<'a> T2::Val<'a> : IntoOwned<'a, Owned = V>,
T2::Batch: Batch,
<T2::Builder as Builder>::Input: Container + PushInto<((K, V), T2::Time, T2::Diff)>,
L: FnMut(T1::Key<'_>, &[(T1::Val<'_>, T1::Diff)], &mut Vec<(V, T2::Diff)>, &mut Vec<(V, T2::Diff)>)+'static,
{
use crate::operators::reduce::reduce_trace;
reduce_trace::<_,_,_,_,V,_>(self, name, logic)
}
}
impl<'a, G, Tr> Arranged<Child<'a, G, G::Timestamp>, Tr>
where
G: Scope<Timestamp=Tr::Time>,
Tr: TraceReader + Clone,
{
/// Brings an arranged collection out of a nested region.
///
/// This method only applies to *regions*, which are subscopes with the same timestamp
/// as their containing scope. In this case, the trace type does not need to change.
pub fn leave_region(&self) -> Arranged<G, Tr> {
use timely::dataflow::operators::Leave;
Arranged {
stream: self.stream.leave(),
trace: self.trace.clone(),
}
}
}
/// A type that can be arranged as if a collection of updates.
pub trait Arrange<G, C>
where
G: Scope,
G::Timestamp: Lattice,
{
/// Arranges updates into a shared trace.
fn arrange<Tr>(&self) -> Arranged<G, TraceAgent<Tr>>
where
Tr: Trace<Time=G::Timestamp> + 'static,
Tr::Batch: Batch,
Tr::Batcher: Batcher<Input=C>,
{
self.arrange_named("Arrange")
}
/// Arranges updates into a shared trace, with a supplied name.
fn arrange_named<Tr>(&self, name: &str) -> Arranged<G, TraceAgent<Tr>>
where
Tr: Trace<Time=G::Timestamp> + 'static,
Tr::Batch: Batch,
Tr::Batcher: Batcher<Input=C>,
;
}
impl<G, K, V, R> Arrange<G, Vec<((K, V), G::Timestamp, R)>> for Collection<G, (K, V), R>
where
G: Scope,
G::Timestamp: Lattice,
K: ExchangeData + Hashable,
V: ExchangeData,
R: ExchangeData + Semigroup,
{
fn arrange_named<Tr>(&self, name: &str) -> Arranged<G, TraceAgent<Tr>>
where
Tr: Trace<Time=G::Timestamp> + 'static,
Tr::Batch: Batch,
Tr::Batcher: Batcher<Input=Vec<((K, V), G::Timestamp, R)>>,
{
let exchange = Exchange::new(move |update: &((K,V),G::Timestamp,R)| (update.0).0.hashed().into());
arrange_core(&self.inner, exchange, name)
}
}
/// Arranges a stream of updates by a key, configured with a name and a parallelization contract.
///
/// This operator arranges a stream of values into a shared trace, whose contents it maintains.
/// It uses the supplied parallelization contract to distribute the data, which does not need to
/// be consistently by key (though this is the most common).
pub fn arrange_core<G, P, Tr>(stream: &StreamCore<G, <Tr::Batcher as Batcher>::Input>, pact: P, name: &str) -> Arranged<G, TraceAgent<Tr>>
where
G: Scope,
G::Timestamp: Lattice,
P: ParallelizationContract<G::Timestamp, <Tr::Batcher as Batcher>::Input>,
Tr: Trace<Time=G::Timestamp>+'static,
Tr::Batch: Batch,
<Tr::Batcher as Batcher>::Input: timely::Container,
{
// The `Arrange` operator is tasked with reacting to an advancing input
// frontier by producing the sequence of batches whose lower and upper
// bounds are those frontiers, containing updates at times greater or
// equal to lower and not greater or equal to upper.
//
// The operator uses its batch type's `Batcher`, which accepts update
// triples and responds to requests to "seal" batches (presented as new
// upper frontiers).
//
// Each sealed batch is presented to the trace, and if at all possible
// transmitted along the outgoing channel. Empty batches may not have
// a corresponding capability, as they are only retained for actual data
// held by the batcher, which may prevents the operator from sending an
// empty batch.
let mut reader: Option<TraceAgent<Tr>> = None;
// fabricate a data-parallel operator using the `unary_notify` pattern.
let reader_ref = &mut reader;
let scope = stream.scope();
let stream = stream.unary_frontier(pact, name, move |_capability, info| {
// Acquire a logger for arrange events.
let logger = {
let register = scope.log_register();
register.get::<crate::logging::DifferentialEvent>("differential/arrange")
};
// Where we will deposit received updates, and from which we extract batches.
let mut batcher = Tr::Batcher::new(logger.clone(), info.global_id);
// Capabilities for the lower envelope of updates in `batcher`.
let mut capabilities = Antichain::<Capability<G::Timestamp>>::new();
let activator = Some(scope.activator_for(info.address.clone()));
let mut empty_trace = Tr::new(info.clone(), logger.clone(), activator);
// If there is default exertion logic set, install it.
if let Some(exert_logic) = scope.config().get::<trace::ExertionLogic>("differential/default_exert_logic").cloned() {
empty_trace.set_exert_logic(exert_logic);
}
let (reader_local, mut writer) = TraceAgent::new(empty_trace, info, logger);
*reader_ref = Some(reader_local);
// Initialize to the minimal input frontier.
let mut prev_frontier = Antichain::from_elem(<G::Timestamp as Timestamp>::minimum());
move |input, output| {
// As we receive data, we need to (i) stash the data and (ii) keep *enough* capabilities.
// We don't have to keep all capabilities, but we need to be able to form output messages
// when we realize that time intervals are complete.
input.for_each(|cap, data| {
capabilities.insert(cap.retain());
batcher.push_container(data);
});
// The frontier may have advanced by multiple elements, which is an issue because
// timely dataflow currently only allows one capability per message. This means we
// must pretend to process the frontier advances one element at a time, batching
// and sending smaller bites than we might have otherwise done.
// Assert that the frontier never regresses.
assert!(PartialOrder::less_equal(&prev_frontier.borrow(), &input.frontier().frontier()));
// Test to see if strict progress has occurred, which happens whenever the new
// frontier isn't equal to the previous. It is only in this case that we have any
// data processing to do.
if prev_frontier.borrow() != input.frontier().frontier() {
// There are two cases to handle with some care:
//
// 1. If any held capabilities are not in advance of the new input frontier,
// we must carve out updates now in advance of the new input frontier and
// transmit them as batches, which requires appropriate *single* capabilities;
// Until timely dataflow supports multiple capabilities on messages, at least.
//
// 2. If there are no held capabilities in advance of the new input frontier,
// then there are no updates not in advance of the new input frontier and
// we can simply create an empty input batch with the new upper frontier
// and feed this to the trace agent (but not along the timely output).
// If there is at least one capability not in advance of the input frontier ...
if capabilities.elements().iter().any(|c| !input.frontier().less_equal(c.time())) {
let mut upper = Antichain::new(); // re-used allocation for sealing batches.
// For each capability not in advance of the input frontier ...
for (index, capability) in capabilities.elements().iter().enumerate() {
if !input.frontier().less_equal(capability.time()) {
// Assemble the upper bound on times we can commit with this capabilities.
// We must respect the input frontier, and *subsequent* capabilities, as
// we are pretending to retire the capability changes one by one.
upper.clear();
for time in input.frontier().frontier().iter() {
upper.insert(time.clone());
}
for other_capability in &capabilities.elements()[(index + 1) .. ] {
upper.insert(other_capability.time().clone());
}
// Extract updates not in advance of `upper`.
let batch = batcher.seal::<Tr::Builder>(upper.clone());
writer.insert(batch.clone(), Some(capability.time().clone()));
// send the batch to downstream consumers, empty or not.
output.session(&capabilities.elements()[index]).give(batch);
}
}
// Having extracted and sent batches between each capability and the input frontier,
// we should downgrade all capabilities to match the batcher's lower update frontier.
// This may involve discarding capabilities, which is fine as any new updates arrive
// in messages with new capabilities.
let mut new_capabilities = Antichain::new();
for time in batcher.frontier().iter() {
if let Some(capability) = capabilities.elements().iter().find(|c| c.time().less_equal(time)) {
new_capabilities.insert(capability.delayed(time));
}
else {
panic!("failed to find capability");
}
}
capabilities = new_capabilities;
}
else {
// Announce progress updates, even without data.
let _batch = batcher.seal::<Tr::Builder>(input.frontier().frontier().to_owned());
writer.seal(input.frontier().frontier().to_owned());
}
prev_frontier.clear();
prev_frontier.extend(input.frontier().frontier().iter().cloned());
}
writer.exert();
}
});
Arranged { stream, trace: reader.unwrap() }
}
impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> Arrange<G, Vec<((K, ()), G::Timestamp, R)>> for Collection<G, K, R>
where
G::Timestamp: Lattice+Ord,
{
fn arrange_named<Tr>(&self, name: &str) -> Arranged<G, TraceAgent<Tr>>
where
Tr: Trace<Time=G::Timestamp> + 'static,
Tr::Batch: Batch,
Tr::Batcher: Batcher<Input=Vec<((K, ()), G::Timestamp, R)>>,
{
let exchange = Exchange::new(move |update: &((K,()),G::Timestamp,R)| (update.0).0.hashed().into());
arrange_core(&self.map(|k| (k, ())).inner, exchange, name)
}
}
/// Arranges something as `(Key,Val)` pairs according to a type `T` of trace.
///
/// This arrangement requires `Key: Hashable`, and uses the `hashed()` method to place keys in a hashed
/// map. This can result in many hash calls, and in some cases it may help to first transform `K` to the
/// pair `(u64, K)` of hash value and key.
pub trait ArrangeByKey<G: Scope, K: Data+Hashable, V: Data, R: Ord+Semigroup+'static>
where G::Timestamp: Lattice+Ord {
/// Arranges a collection of `(Key, Val)` records by `Key`.
///
/// This operator arranges a stream of values into a shared trace, whose contents it maintains.
/// This trace is current for all times completed by the output stream, which can be used to
/// safely identify the stable times and values in the trace.
fn arrange_by_key(&self) -> Arranged<G, TraceAgent<ValSpine<K, V, G::Timestamp, R>>>;
/// As `arrange_by_key` but with the ability to name the arrangement.
fn arrange_by_key_named(&self, name: &str) -> Arranged<G, TraceAgent<ValSpine<K, V, G::Timestamp, R>>>;
}
impl<G: Scope, K: ExchangeData+Hashable, V: ExchangeData, R: ExchangeData+Semigroup> ArrangeByKey<G, K, V, R> for Collection<G, (K,V), R>
where
G::Timestamp: Lattice+Ord
{
fn arrange_by_key(&self) -> Arranged<G, TraceAgent<ValSpine<K, V, G::Timestamp, R>>> {
self.arrange_by_key_named("ArrangeByKey")
}
fn arrange_by_key_named(&self, name: &str) -> Arranged<G, TraceAgent<ValSpine<K, V, G::Timestamp, R>>> {
self.arrange_named(name)
}
}
/// Arranges something as `(Key, ())` pairs according to a type `T` of trace.
///
/// This arrangement requires `Key: Hashable`, and uses the `hashed()` method to place keys in a hashed
/// map. This can result in many hash calls, and in some cases it may help to first transform `K` to the
/// pair `(u64, K)` of hash value and key.
pub trait ArrangeBySelf<G: Scope, K: Data+Hashable, R: Ord+Semigroup+'static>
where
G::Timestamp: Lattice+Ord
{
/// Arranges a collection of `Key` records by `Key`.
///
/// This operator arranges a collection of records into a shared trace, whose contents it maintains.
/// This trace is current for all times complete in the output stream, which can be used to safely
/// identify the stable times and values in the trace.
fn arrange_by_self(&self) -> Arranged<G, TraceAgent<KeySpine<K, G::Timestamp, R>>>;
/// As `arrange_by_self` but with the ability to name the arrangement.
fn arrange_by_self_named(&self, name: &str) -> Arranged<G, TraceAgent<KeySpine<K, G::Timestamp, R>>>;
}
impl<G: Scope, K: ExchangeData+Hashable, R: ExchangeData+Semigroup> ArrangeBySelf<G, K, R> for Collection<G, K, R>
where
G::Timestamp: Lattice+Ord
{
fn arrange_by_self(&self) -> Arranged<G, TraceAgent<KeySpine<K, G::Timestamp, R>>> {
self.arrange_by_self_named("ArrangeBySelf")
}
fn arrange_by_self_named(&self, name: &str) -> Arranged<G, TraceAgent<KeySpine<K, G::Timestamp, R>>> {
self.map(|k| (k, ()))
.arrange_named(name)
}
}