1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
//! A general purpose `Batcher` implementation based on radix sort for TimelyStack.

use crate::consolidation::consolidate_updates;
use std::cmp::Ordering;
use timely::communication::message::RefOrMut;
use timely::container::columnation::{Columnation, TimelyStack};
use timely::progress::frontier::{Antichain, AntichainRef};
use timely::{Container, Data, PartialOrder};

use crate::difference::Semigroup;
use crate::trace::implementations::merge_batcher::Merger;
use crate::trace::Builder;

/// A merger for timely stacks
pub struct ColumnationMerger<T> {
    pending: Vec<T>,
}

impl<T> Default for ColumnationMerger<T> {
    fn default() -> Self {
        Self { pending: Vec::default() }
    }
}

impl<T: Columnation> ColumnationMerger<T> {
    const BUFFER_SIZE_BYTES: usize = 64 << 10;
    fn chunk_capacity(&self) -> usize {
        let size = ::std::mem::size_of::<T>();
        if size == 0 {
            Self::BUFFER_SIZE_BYTES
        } else if size <= Self::BUFFER_SIZE_BYTES {
            Self::BUFFER_SIZE_BYTES / size
        } else {
            1
        }
    }

    /// Buffer size for pending updates, currently 2 * [`Self::chunk_capacity`].
    fn pending_capacity(&self) -> usize {
        self.chunk_capacity() * 2
    }

    /// Helper to get pre-sized vector from the stash.
    #[inline]
    fn empty(&self, stash: &mut Vec<TimelyStack<T>>) -> TimelyStack<T> {
        stash.pop().unwrap_or_else(|| TimelyStack::with_capacity(self.chunk_capacity()))
    }

    /// Helper to return a chunk to the stash.
    #[inline]
    fn recycle(&self, mut chunk: TimelyStack<T>, stash: &mut Vec<TimelyStack<T>>) {
        // TODO: Should we limit the size of `stash`?
        if chunk.capacity() == self.chunk_capacity() {
            chunk.clear();
            stash.push(chunk);
        }
    }
}

impl<K, V, T, R> Merger for ColumnationMerger<((K, V), T, R)>
where
    K: Columnation + Ord + Data,
    V: Columnation + Ord + Data,
    T: Columnation + Ord + PartialOrder + Data,
    R: Columnation + Semigroup + 'static,
{
    type Time = T;
    type Input = Vec<((K, V), T, R)>;
    type Chunk = TimelyStack<((K, V), T, R)>;
    type Output = ((K, V), T, R);

    fn accept(&mut self, container: RefOrMut<Self::Input>, stash: &mut Vec<Self::Chunk>) -> Vec<Self::Chunk> {
        // Ensure `self.pending` has the desired capacity. We should never have a larger capacity
        // because we don't write more than capacity elements into the buffer.
        if self.pending.capacity() < self.pending_capacity() {
            self.pending.reserve(self.pending_capacity() - self.pending.len());
        }

        // Form a chain from what's in pending.
        // This closure does the following:
        // * If pending is full, consolidate.
        // * If after consolidation it's more than half full, peel off a chain of full blocks,
        //   leaving behind any partial block in pending.
        // * Merge the new chain with `final_chain` and return it in-place.
        let form_chain = |this: &mut Self, final_chain: &mut Vec<Self::Chunk>, stash: &mut _| {
            if this.pending.len() == this.pending.capacity() {
                consolidate_updates(&mut this.pending);
                if this.pending.len() >= this.chunk_capacity() {
                    let mut chain = Vec::default();
                    while this.pending.len() > this.chunk_capacity() {
                        let mut chunk = this.empty(stash);
                        for datum in this.pending.drain(..chunk.capacity()) {
                            chunk.copy(&datum);
                        }
                        chain.push(chunk);
                    }
                    if final_chain.is_empty() {
                        *final_chain = chain;
                    } else if !chain.is_empty() {
                        let mut output = Vec::default();
                        this.merge(std::mem::take(final_chain), chain, &mut output, stash);
                        *final_chain = output;
                    }
                }
            }
        };

        let mut final_chain = Vec::default();
        // `container` is either a shared reference or an owned allocations.
        match container {
            RefOrMut::Ref(vec) => {
                let mut slice = &vec[..];
                while !slice.is_empty() {
                    let (head, tail) = slice.split_at(std::cmp::min(self.pending.capacity() - self.pending.len(), slice.len()));
                    slice = tail;
                    self.pending.extend_from_slice(head);
                    form_chain(self, &mut final_chain, stash);
                }
            }
            RefOrMut::Mut(vec) => {
                while !vec.is_empty() {
                    self.pending.extend(vec.drain(..std::cmp::min(self.pending.capacity() - self.pending.len(), vec.len())));
                    form_chain(self, &mut final_chain, stash);
                }
            }
        }
        final_chain
    }

    fn finish(&mut self, stash: &mut Vec<Self::Chunk>) -> Vec<Self::Chunk> {
        // Extract all data from `pending`.
        consolidate_updates(&mut self.pending);
        let mut chain = Vec::default();
        while !self.pending.is_empty() {
            let mut chunk = self.empty(stash);
            for datum in self.pending.drain(..std::cmp::min(chunk.capacity(), self.pending.len())) {
                chunk.copy(&datum);
            }
            chain.push(chunk);
        }
        chain
    }

    fn merge(&mut self, list1: Vec<Self::Chunk>, list2: Vec<Self::Chunk>, output: &mut Vec<Self::Chunk>, stash: &mut Vec<Self::Chunk>) {
        let mut list1 = list1.into_iter();
        let mut list2 = list2.into_iter();

        let mut head1 = TimelyStackQueue::from(list1.next().unwrap_or_default());
        let mut head2 = TimelyStackQueue::from(list2.next().unwrap_or_default());

        let mut result = self.empty(stash);

        // while we have valid data in each input, merge.
        while !head1.is_empty() && !head2.is_empty() {
            while (result.capacity() - result.len()) > 0 && !head1.is_empty() && !head2.is_empty() {
                let cmp = {
                    let x = head1.peek();
                    let y = head2.peek();
                    (&x.0, &x.1).cmp(&(&y.0, &y.1))
                };
                match cmp {
                    Ordering::Less => {
                        result.copy(head1.pop());
                    }
                    Ordering::Greater => {
                        result.copy(head2.pop());
                    }
                    Ordering::Equal => {
                        let (data1, time1, diff1) = head1.pop();
                        let (_data2, _time2, diff2) = head2.pop();
                        let mut diff1 = diff1.clone();
                        diff1.plus_equals(diff2);
                        if !diff1.is_zero() {
                            result.copy_destructured(data1, time1, &diff1);
                        }
                    }
                }
            }

            if result.capacity() == result.len() {
                output.push(result);
                result = self.empty(stash);
            }

            if head1.is_empty() {
                self.recycle(head1.done(), stash);
                head1 = TimelyStackQueue::from(list1.next().unwrap_or_default());
            }
            if head2.is_empty() {
                self.recycle(head2.done(), stash);
                head2 = TimelyStackQueue::from(list2.next().unwrap_or_default());
            }
        }

        if result.len() > 0 {
            output.push(result);
        } else {
            self.recycle(result, stash);
        }

        if !head1.is_empty() {
            let mut result = self.empty(stash);
            result.reserve_items(head1.iter());
            for item in head1.iter() {
                result.copy(item);
            }
            output.push(result);
        }
        output.extend(list1);

        if !head2.is_empty() {
            let mut result = self.empty(stash);
            result.reserve_items(head2.iter());
            for item in head2.iter() {
                result.copy(item);
            }
            output.push(result);
        }
        output.extend(list2);
    }

    fn extract(
        &mut self,
        merged: Vec<Self::Chunk>,
        upper: AntichainRef<Self::Time>,
        frontier: &mut Antichain<Self::Time>,
        readied: &mut Vec<Self::Chunk>,
        kept: &mut Vec<Self::Chunk>,
        stash: &mut Vec<Self::Chunk>,
    ) {
        let mut keep = self.empty(stash);
        let mut ready = self.empty(stash);

        for buffer in merged {
            for d @ (_data, time, _diff) in buffer.iter() {
                if upper.less_equal(time) {
                    frontier.insert_ref(time);
                    if keep.len() == keep.capacity() && !keep.is_empty() {
                        kept.push(keep);
                        keep = self.empty(stash);
                    }
                    keep.copy(d);
                } else {
                    if ready.len() == ready.capacity() && !ready.is_empty() {
                        readied.push(ready);
                        ready = self.empty(stash);
                    }
                    ready.copy(d);
                }
            }
            // Recycling buffer.
            self.recycle(buffer, stash);
        }
        // Finish the kept data.
        if !keep.is_empty() {
            kept.push(keep);
        }
        if !ready.is_empty() {
            readied.push(ready);
        }
    }

    fn seal<B: Builder<Input = Self::Output, Time = Self::Time>>(
        chain: &mut Vec<Self::Chunk>,
        lower: AntichainRef<Self::Time>,
        upper: AntichainRef<Self::Time>,
        since: AntichainRef<Self::Time>,
    ) -> B::Output {
        let mut keys = 0;
        let mut vals = 0;
        let mut upds = 0;
        let mut prev_keyval = None;
        for buffer in chain.iter() {
            for ((key, val), time, _) in buffer.iter() {
                if !upper.less_equal(time) {
                    if let Some((p_key, p_val)) = prev_keyval {
                        if p_key != key {
                            keys += 1;
                            vals += 1;
                        } else if p_val != val {
                            vals += 1;
                        }
                    } else {
                        keys += 1;
                        vals += 1;
                    }
                    upds += 1;
                    prev_keyval = Some((key, val));
                }
            }
        }
        let mut builder = B::with_capacity(keys, vals, upds);

        for chunk in chain.drain(..) {
            for datum in chunk.iter() {
                builder.copy(datum);
            }
        }

        builder.done(lower.to_owned(), upper.to_owned(), since.to_owned())
    }

    fn account(chunk: &Self::Chunk) -> (usize, usize, usize, usize) {
        let (mut size, mut capacity, mut allocations) = (0, 0, 0);
        let cb = |siz, cap| {
            size += siz;
            capacity += cap;
            allocations += 1;
        };
        chunk.heap_size(cb);
        (chunk.len(), size, capacity, allocations)
    }
}

struct TimelyStackQueue<T: Columnation> {
    list: TimelyStack<T>,
    head: usize,
}

impl<T: Columnation> Default for TimelyStackQueue<T> {
    fn default() -> Self {
        Self::from(Default::default())
    }
}

impl<T: Columnation> TimelyStackQueue<T> {
    fn pop(&mut self) -> &T {
        self.head += 1;
        &self.list[self.head - 1]
    }

    fn peek(&self) -> &T {
        &self.list[self.head]
    }

    fn from(list: TimelyStack<T>) -> Self {
        TimelyStackQueue { list, head: 0 }
    }

    fn done(self) -> TimelyStack<T> {
        self.list
    }

    fn is_empty(&self) -> bool {
        self.head == self.list[..].len()
    }

    /// Return an iterator over the remaining elements.
    fn iter(&self) -> impl Iterator<Item = &T> + Clone {
        self.list[self.head..].iter()
    }
}