1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//! A general purpose `Batcher` implementation based on radix sort for TimelyStack.

use std::cmp::Ordering;
use std::marker::PhantomData;
use timely::container::columnation::{Columnation, TimelyStack};
use timely::progress::frontier::{Antichain, AntichainRef};
use timely::{Container, Data, PartialOrder};

use crate::difference::Semigroup;
use crate::trace::implementations::merge_batcher::Merger;

/// A merger for timely stacks
pub struct ColumnationMerger<T> {
    _marker: PhantomData<T>,
}

impl<T> Default for ColumnationMerger<T> {
    fn default() -> Self {
        Self {
            _marker: PhantomData,
        }
    }
}

impl<T: Columnation> ColumnationMerger<T> {
    const BUFFER_SIZE_BYTES: usize = 64 << 10;
    fn chunk_capacity(&self) -> usize {
        let size = ::std::mem::size_of::<T>();
        if size == 0 {
            Self::BUFFER_SIZE_BYTES
        } else if size <= Self::BUFFER_SIZE_BYTES {
            Self::BUFFER_SIZE_BYTES / size
        } else {
            1
        }
    }

    /// Helper to get pre-sized vector from the stash.
    #[inline]
    fn empty(&self, stash: &mut Vec<TimelyStack<T>>) -> TimelyStack<T> {
        stash.pop().unwrap_or_else(|| TimelyStack::with_capacity(self.chunk_capacity()))
    }

    /// Helper to return a chunk to the stash.
    #[inline]
    fn recycle(&self, mut chunk: TimelyStack<T>, stash: &mut Vec<TimelyStack<T>>) {
        // TODO: Should we limit the size of `stash`?
        if chunk.capacity() == self.chunk_capacity() {
            chunk.clear();
            stash.push(chunk);
        }
    }
}

impl<D, T, R> Merger for ColumnationMerger<(D, T, R)>
where
    D: Columnation + Ord + Data,
    T: Columnation + Ord + PartialOrder + Data,
    R: Columnation + Semigroup + 'static,
{
    type Time = T;
    type Chunk = TimelyStack<(D, T, R)>;

    fn merge(&mut self, list1: Vec<Self::Chunk>, list2: Vec<Self::Chunk>, output: &mut Vec<Self::Chunk>, stash: &mut Vec<Self::Chunk>) {
        let mut list1 = list1.into_iter();
        let mut list2 = list2.into_iter();

        let mut head1 = TimelyStackQueue::from(list1.next().unwrap_or_default());
        let mut head2 = TimelyStackQueue::from(list2.next().unwrap_or_default());

        let mut result = self.empty(stash);

        // while we have valid data in each input, merge.
        while !head1.is_empty() && !head2.is_empty() {
            while (result.capacity() - result.len()) > 0 && !head1.is_empty() && !head2.is_empty() {
                let cmp = {
                    let x = head1.peek();
                    let y = head2.peek();
                    (&x.0, &x.1).cmp(&(&y.0, &y.1))
                };
                match cmp {
                    Ordering::Less => {
                        result.copy(head1.pop());
                    }
                    Ordering::Greater => {
                        result.copy(head2.pop());
                    }
                    Ordering::Equal => {
                        let (data1, time1, diff1) = head1.pop();
                        let (_data2, _time2, diff2) = head2.pop();
                        let mut diff1 = diff1.clone();
                        diff1.plus_equals(diff2);
                        if !diff1.is_zero() {
                            result.copy_destructured(data1, time1, &diff1);
                        }
                    }
                }
            }

            if result.capacity() == result.len() {
                output.push(result);
                result = self.empty(stash);
            }

            if head1.is_empty() {
                self.recycle(head1.done(), stash);
                head1 = TimelyStackQueue::from(list1.next().unwrap_or_default());
            }
            if head2.is_empty() {
                self.recycle(head2.done(), stash);
                head2 = TimelyStackQueue::from(list2.next().unwrap_or_default());
            }
        }

        if result.len() > 0 {
            output.push(result);
        } else {
            self.recycle(result, stash);
        }

        if !head1.is_empty() {
            let mut result = self.empty(stash);
            result.reserve_items(head1.iter());
            for item in head1.iter() {
                result.copy(item);
            }
            output.push(result);
        }
        output.extend(list1);

        if !head2.is_empty() {
            let mut result = self.empty(stash);
            result.reserve_items(head2.iter());
            for item in head2.iter() {
                result.copy(item);
            }
            output.push(result);
        }
        output.extend(list2);
    }

    fn extract(
        &mut self,
        merged: Vec<Self::Chunk>,
        upper: AntichainRef<Self::Time>,
        frontier: &mut Antichain<Self::Time>,
        readied: &mut Vec<Self::Chunk>,
        kept: &mut Vec<Self::Chunk>,
        stash: &mut Vec<Self::Chunk>,
    ) {
        let mut keep = self.empty(stash);
        let mut ready = self.empty(stash);

        for buffer in merged {
            for d @ (_data, time, _diff) in buffer.iter() {
                if upper.less_equal(time) {
                    frontier.insert_ref(time);
                    if keep.len() == keep.capacity() && !keep.is_empty() {
                        kept.push(keep);
                        keep = self.empty(stash);
                    }
                    keep.copy(d);
                } else {
                    if ready.len() == ready.capacity() && !ready.is_empty() {
                        readied.push(ready);
                        ready = self.empty(stash);
                    }
                    ready.copy(d);
                }
            }
            // Recycling buffer.
            self.recycle(buffer, stash);
        }
        // Finish the kept data.
        if !keep.is_empty() {
            kept.push(keep);
        }
        if !ready.is_empty() {
            readied.push(ready);
        }
    }

    fn account(chunk: &Self::Chunk) -> (usize, usize, usize, usize) {
        let (mut size, mut capacity, mut allocations) = (0, 0, 0);
        let cb = |siz, cap| {
            size += siz;
            capacity += cap;
            allocations += 1;
        };
        chunk.heap_size(cb);
        (chunk.len(), size, capacity, allocations)
    }
}

struct TimelyStackQueue<T: Columnation> {
    list: TimelyStack<T>,
    head: usize,
}

impl<T: Columnation> Default for TimelyStackQueue<T> {
    fn default() -> Self {
        Self::from(Default::default())
    }
}

impl<T: Columnation> TimelyStackQueue<T> {
    fn pop(&mut self) -> &T {
        self.head += 1;
        &self.list[self.head - 1]
    }

    fn peek(&self) -> &T {
        &self.list[self.head]
    }

    fn from(list: TimelyStack<T>) -> Self {
        TimelyStackQueue { list, head: 0 }
    }

    fn done(self) -> TimelyStack<T> {
        self.list
    }

    fn is_empty(&self) -> bool {
        self.head == self.list[..].len()
    }

    /// Return an iterator over the remaining elements.
    fn iter(&self) -> impl Iterator<Item = &T> + Clone {
        self.list[self.head..].iter()
    }
}