Crate arrow_array
source ·Expand description
The central type in Apache Arrow are arrays, which are a known-length sequence of values
all having the same type. This crate provides concrete implementations of each type, as
well as an Array
trait that can be used for type-erasure.
§Building an Array
Most Array
implementations can be constructed directly from iterators or Vec
Int32Array::from(vec![1, 2]);
Int32Array::from(vec![Some(1), None]);
Int32Array::from_iter([1, 2, 3, 4]);
Int32Array::from_iter([Some(1), Some(2), None, Some(4)]);
StringArray::from(vec!["foo", "bar"]);
StringArray::from(vec![Some("foo"), None]);
StringArray::from_iter([Some("foo"), None]);
StringArray::from_iter_values(["foo", "bar"]);
ListArray::from_iter_primitive::<Int32Type, _, _>([
Some(vec![Some(1), None, Some(3)]),
None,
Some(vec![])
]);
Additionally ArrayBuilder
implementations can be
used to construct arrays with a push-based interface
// Create a new builder with a capacity of 100
let mut builder = Int16Array::builder(100);
// Append a single primitive value
builder.append_value(1);
// Append a null value
builder.append_null();
// Append a slice of primitive values
builder.append_slice(&[2, 3, 4]);
// Build the array
let array = builder.finish();
assert_eq!(5, array.len());
assert_eq!(2, array.value(2));
assert_eq!(&array.values()[3..5], &[3, 4])
§Low-level API
Internally, arrays consist of one or more shared memory regions backed by a Buffer
,
the number and meaning of which depend on the array’s data type, as documented in
the Arrow specification.
For example, the type Int16Array
represents an array of 16-bit integers and consists of:
- An optional
NullBuffer
identifying any null values - A contiguous
ScalarBuffer<i16>
of values
Similarly, the type StringArray
represents an array of UTF-8 strings and consists of:
- An optional
NullBuffer
identifying any null values - An offsets
OffsetBuffer<i32>
identifying valid UTF-8 sequences within the values buffer - A values
Buffer
of UTF-8 encoded string data
Array constructors such as PrimitiveArray::try_new
provide the ability to cheaply
construct an array from these parts, with functions such as PrimitiveArray::into_parts
providing the reverse operation.
// Create a Int32Array from Vec without copying
let array = Int32Array::new(vec![1, 2, 3].into(), None);
assert_eq!(array.values(), &[1, 2, 3]);
assert_eq!(array.null_count(), 0);
// Create a StringArray from parts
let offsets = OffsetBuffer::new(vec![0, 5, 10].into());
let array = StringArray::new(offsets, b"helloworld".into(), None);
let values: Vec<_> = array.iter().map(|x| x.unwrap()).collect();
assert_eq!(values, &["hello", "world"]);
As Buffer
, and its derivatives, can be created from Vec
without copying, this provides
an efficient way to not only interoperate with other Rust code, but also implement kernels
optimised for the arrow data layout - e.g. by handling buffers instead of values.
§Zero-Copy Slicing
Given an Array
of arbitrary length, it is possible to create an owned slice of this
data. Internally this just increments some ref-counts, and so is incredibly cheap
let array = Int32Array::from_iter([1, 2, 3]);
// Slice with offset 1 and length 2
let sliced = array.slice(1, 2);
assert_eq!(sliced.values(), &[2, 3]);
§Downcasting an Array
Arrays are often passed around as a dynamically typed &dyn Array
or ArrayRef
.
For example, RecordBatch
stores columns as ArrayRef
.
Whilst these arrays can be passed directly to the compute
, csv
, json
, etc… APIs,
it is often the case that you wish to interact with the concrete arrays directly.
This requires downcasting to the concrete type of the array:
// Safely downcast an `Array` to an `Int32Array` and compute the sum
// using native i32 values
fn sum_int32(array: &dyn Array) -> i32 {
let integers: &Int32Array = array.as_any().downcast_ref().unwrap();
integers.iter().map(|val| val.unwrap_or_default()).sum()
}
// Safely downcasts the array to a `Float32Array` and returns a &[f32] view of the data
// Note: the values for positions corresponding to nulls will be arbitrary (but still valid f32)
fn as_f32_slice(array: &dyn Array) -> &[f32] {
array.as_any().downcast_ref::<Float32Array>().unwrap().values()
}
The cast::AsArray
extension trait can make this more ergonomic
fn as_f32_slice(array: &dyn Array) -> &[f32] {
array.as_primitive::<Float32Type>().values()
}
§Alternatives to ChunkedArray Support
The Rust implementation does not provide the ChunkedArray abstraction implemented by the Python and C++ Arrow implementations. The recommended alternative is to use one of the following:
Vec<ArrayRef>
a simple, eager version of aChunkedArray
impl Iterator<Item=ArrayRef>
a lazy version of aChunkedArray
impl Stream<Item=ArrayRef>
a lazy async version of aChunkedArray
Similar patterns can be applied at the RecordBatch
level. For example, DataFusion makes
extensive use of RecordBatchStream.
This approach integrates well into the Rust ecosystem, simplifies the implementation and encourages the use of performant lazy and async patterns.
use std::sync::Arc;
use arrow_array::{ArrayRef, Float32Array, RecordBatch, StringArray};
use arrow_array::cast::AsArray;
use arrow_array::types::Float32Type;
use arrow_schema::DataType;
let batches = [
RecordBatch::try_from_iter(vec![
("label", Arc::new(StringArray::from(vec!["A", "B", "C"])) as ArrayRef),
("value", Arc::new(Float32Array::from(vec![0.1, 0.2, 0.3])) as ArrayRef),
]).unwrap(),
RecordBatch::try_from_iter(vec![
("label", Arc::new(StringArray::from(vec!["D", "E"])) as ArrayRef),
("value", Arc::new(Float32Array::from(vec![0.4, 0.5])) as ArrayRef),
]).unwrap(),
];
let labels: Vec<&str> = batches
.iter()
.flat_map(|batch| batch.column(0).as_string::<i32>())
.map(Option::unwrap)
.collect();
let values: Vec<f32> = batches
.iter()
.flat_map(|batch| batch.column(1).as_primitive::<Float32Type>().values())
.copied()
.collect();
assert_eq!(labels, ["A", "B", "C", "D", "E"]);
assert_eq!(values, [0.1, 0.2, 0.3, 0.4, 0.5]);
Re-exports§
pub use array::*;
Modules§
- The concrete array definitions
- Defines push-based APIs for constructing arrays
- Defines helper functions for downcasting
dyn Array
to concrete types - Idiomatic iterators for
Array
- Idiomatic iterator for
RunArray
- Conversion methods for dates and times.
- Timezone for timestamp arrays
- Zero-sized types used to parameterize generic array implementations
Macros§
- Creates an array from a literal slice of values, suitable for rapid testing and development.
- Downcast an
Array
to aDictionaryArray
based on itsDataType
, accepts a number of subsequent patterns to match the data type - Given one or more expressions evaluating to an integer
DataType
invokes the provided macrom
with the corresponding integerArrowPrimitiveType
, followed by any additional arguments - Given one or more expressions evaluating to primitive
DataType
invokes the provided macrom
with the correspondingArrowPrimitiveType
, followed by any additional arguments - Downcast an
Array
to aPrimitiveArray
based on itsDataType
accepts a number of subsequent patterns to match the data type - Given one or more expressions evaluating to an integer
DataType
invokes the provided macrom
with the corresponding integerRunEndIndexType
, followed by any additional arguments - Given one or more expressions evaluating to primitive
DataType
invokes the provided macrom
with the correspondingArrowPrimitiveType
, followed by any additional arguments - Downcast an
Array
to a temporalPrimitiveArray
based on itsDataType
accepts a number of subsequent patterns to match the data type - Creates a record batch from literal slice of values, suitable for rapid testing and development.
Structs§
- A two-dimensional batch of column-oriented data with a defined schema.
- Generic implementation of RecordBatchReader that wraps an iterator.
- Options that control the behaviour used when creating a
RecordBatch
.
Traits§
- Trait for
ArrowNativeType
that adds checked and unchecked arithmetic operations, and totally ordered comparison operations - A subtype of primitive type that represents numeric values.
- Trait for types that can read
RecordBatch
’s. - Trait for types that can write
RecordBatch
’s.