Trait differential_dataflow::operators::join::Join

source ·
pub trait Join<G: Scope, K: Data, V: Data, R: Semigroup> {
    // Required methods
    fn join_map<V2, R2, D, L>(
        &self,
        other: &Collection<G, (K, V2), R2>,
        logic: L,
    ) -> Collection<G, D, <R as Multiply<R2>>::Output>
       where K: ExchangeData,
             V2: ExchangeData,
             R2: ExchangeData + Semigroup,
             R: Multiply<R2>,
             <R as Multiply<R2>>::Output: Semigroup + 'static,
             D: Data,
             L: FnMut(&K, &V, &V2) -> D + 'static;
    fn semijoin<R2>(
        &self,
        other: &Collection<G, K, R2>,
    ) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
       where K: ExchangeData,
             R2: ExchangeData + Semigroup,
             R: Multiply<R2>,
             <R as Multiply<R2>>::Output: Semigroup + 'static;
    fn antijoin<R2>(
        &self,
        other: &Collection<G, K, R2>,
    ) -> Collection<G, (K, V), R>
       where K: ExchangeData,
             R2: ExchangeData + Semigroup,
             R: Multiply<R2, Output = R> + Abelian + 'static;

    // Provided method
    fn join<V2, R2>(
        &self,
        other: &Collection<G, (K, V2), R2>,
    ) -> Collection<G, (K, (V, V2)), <R as Multiply<R2>>::Output>
       where K: ExchangeData,
             V2: ExchangeData,
             R2: ExchangeData + Semigroup,
             R: Multiply<R2>,
             <R as Multiply<R2>>::Output: Semigroup + 'static { ... }
}
Expand description

Join implementations for (key,val) data.

Required Methods§

source

fn join_map<V2, R2, D, L>( &self, other: &Collection<G, (K, V2), R2>, logic: L, ) -> Collection<G, D, <R as Multiply<R2>>::Output>
where K: ExchangeData, V2: ExchangeData, R2: ExchangeData + Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup + 'static, D: Data, L: FnMut(&K, &V, &V2) -> D + 'static,

Matches pairs (key,val1) and (key,val2) based on key and then applies a function.

§Examples
use differential_dataflow::input::Input;
use differential_dataflow::operators::Join;

::timely::example(|scope| {

    let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    let z = scope.new_collection_from(vec![(1, 'a'), (3, 'b')]).1;

    x.join_map(&y, |_key, &a, &b| (a,b))
     .assert_eq(&z);
});
source

fn semijoin<R2>( &self, other: &Collection<G, K, R2>, ) -> Collection<G, (K, V), <R as Multiply<R2>>::Output>
where K: ExchangeData, R2: ExchangeData + Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup + 'static,

Matches pairs (key, val) and key based on key, producing the former with frequencies multiplied.

When the second collection contains frequencies that are either zero or one this is the more traditional relational semijoin. When the second collection may contain multiplicities, this operation may scale up the counts of the records in the first input.

§Examples
use differential_dataflow::input::Input;
use differential_dataflow::operators::Join;

::timely::example(|scope| {

    let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    let y = scope.new_collection_from(vec![0, 2]).1;
    let z = scope.new_collection_from(vec![(0, 1)]).1;

    x.semijoin(&y)
     .assert_eq(&z);
});
source

fn antijoin<R2>(&self, other: &Collection<G, K, R2>) -> Collection<G, (K, V), R>
where K: ExchangeData, R2: ExchangeData + Semigroup, R: Multiply<R2, Output = R> + Abelian + 'static,

Subtracts the semijoin with other from self.

In the case that other has multiplicities zero or one this results in a relational antijoin, in which we discard input records whose key is present in other. If the multiplicities could be other than zero or one, the semantic interpretation of this operator is less clear.

In almost all cases, you should ensure that other has multiplicities that are zero or one, perhaps by using the distinct operator.

§Examples
use differential_dataflow::input::Input;
use differential_dataflow::operators::Join;

::timely::example(|scope| {

    let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    let y = scope.new_collection_from(vec![0, 2]).1;
    let z = scope.new_collection_from(vec![(1, 3)]).1;

    x.antijoin(&y)
     .assert_eq(&z);
});

Provided Methods§

source

fn join<V2, R2>( &self, other: &Collection<G, (K, V2), R2>, ) -> Collection<G, (K, (V, V2)), <R as Multiply<R2>>::Output>
where K: ExchangeData, V2: ExchangeData, R2: ExchangeData + Semigroup, R: Multiply<R2>, <R as Multiply<R2>>::Output: Semigroup + 'static,

Matches pairs (key,val1) and (key,val2) based on key and yields pairs (key, (val1, val2)).

The join_map method may be more convenient for non-trivial processing pipelines.

§Examples
use differential_dataflow::input::Input;
use differential_dataflow::operators::Join;

::timely::example(|scope| {

    let x = scope.new_collection_from(vec![(0, 1), (1, 3)]).1;
    let y = scope.new_collection_from(vec![(0, 'a'), (1, 'b')]).1;
    let z = scope.new_collection_from(vec![(0, (1, 'a')), (1, (3, 'b'))]).1;

    x.join(&y)
     .assert_eq(&z);
});

Object Safety§

This trait is not object safe.

Implementors§

source§

impl<G, K, V, R> Join<G, K, V, R> for Collection<G, (K, V), R>

source§

impl<G, K, V, Tr> Join<G, K, V, <Tr as TraceReader>::Diff> for Arranged<G, Tr>
where G: Scope<Timestamp = Tr::Time>, Tr: for<'a> TraceReader<Key<'a> = &'a K, Val<'a> = &'a V> + Clone + 'static, K: ExchangeData + Hashable, V: Data + 'static,