pub trait Operator<G: Scope, C1> {
// Required methods
fn unary_frontier<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>
where CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>;
fn unary_notify<CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P: ParallelizationContract<G::Timestamp, C1>>(
&self,
pact: P,
name: &str,
init: impl IntoIterator<Item = G::Timestamp>,
logic: L,
) -> StreamCore<G, CB::Container>;
fn unary<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>
where CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>;
fn binary_frontier<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>
where C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P1::Puller>, &mut FrontieredInputHandleCore<'_, G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>;
fn binary_notify<C2: Container, CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P1: ParallelizationContract<G::Timestamp, C1>, P2: ParallelizationContract<G::Timestamp, C2>>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
init: impl IntoIterator<Item = G::Timestamp>,
logic: L,
) -> StreamCore<G, CB::Container>;
fn binary<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>
where C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>;
fn sink<L, P>(&self, pact: P, name: &str, logic: L)
where L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>;
}Expand description
Methods to construct generic streaming and blocking operators.
Required Methods§
Sourcefn unary_frontier<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
fn unary_frontier<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
Creates a new dataflow operator that partitions its input stream by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input stream, write to the output stream, and inspect the frontier at the input.
§Examples
use std::collections::HashMap;
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::Operator;
use timely::dataflow::channels::pact::Pipeline;
timely::example(|scope| {
(0u64..10).to_stream(scope)
.unary_frontier(Pipeline, "example", |default_cap, _info| {
let mut cap = Some(default_cap.delayed(&12));
let mut notificator = FrontierNotificator::default();
let mut stash = HashMap::new();
move |input, output| {
if let Some(ref c) = cap.take() {
output.session(&c).give(12);
}
while let Some((time, data)) = input.next() {
stash.entry(time.time().clone())
.or_insert(Vec::new())
.extend(data.drain(..));
}
notificator.for_each(&[input.frontier()], |time, _not| {
if let Some(mut vec) = stash.remove(time.time()) {
output.session(&time).give_iterator(vec.drain(..));
}
});
}
})
.container::<Vec<_>>();
});Sourcefn unary_notify<CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P: ParallelizationContract<G::Timestamp, C1>>(
&self,
pact: P,
name: &str,
init: impl IntoIterator<Item = G::Timestamp>,
logic: L,
) -> StreamCore<G, CB::Container>
fn unary_notify<CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P: ParallelizationContract<G::Timestamp, C1>>( &self, pact: P, name: &str, init: impl IntoIterator<Item = G::Timestamp>, logic: L, ) -> StreamCore<G, CB::Container>
Creates a new dataflow operator that partitions its input stream by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input stream, write to the output stream, and inspect the frontier at the input.
§Examples
use std::collections::HashMap;
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::Operator;
use timely::dataflow::channels::pact::Pipeline;
timely::example(|scope| {
(0u64..10)
.to_stream(scope)
.unary_notify(Pipeline, "example", None, move |input, output, notificator| {
input.for_each(|time, data| {
output.session(&time).give_container(data);
notificator.notify_at(time.retain());
});
notificator.for_each(|time, _cnt, _not| {
println!("notified at {:?}", time);
});
});
});Sourcefn unary<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
fn unary<CB, B, L, P>(
&self,
pact: P,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
Creates a new dataflow operator that partitions its input stream by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input stream, and write to the output stream.
§Examples
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;
timely::example(|scope| {
(0u64..10).to_stream(scope)
.unary(Pipeline, "example", |default_cap, _info| {
let mut cap = Some(default_cap.delayed(&12));
move |input, output| {
if let Some(ref c) = cap.take() {
output.session(&c).give(100);
}
while let Some((time, data)) = input.next() {
output.session(&time).give_container(data);
}
}
});
});Sourcefn binary_frontier<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P1::Puller>, &mut FrontieredInputHandleCore<'_, G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>,
fn binary_frontier<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P1::Puller>, &mut FrontieredInputHandleCore<'_, G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>,
Creates a new dataflow operator that partitions its input streams by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.
§Examples
use std::collections::HashMap;
use timely::dataflow::operators::{Input, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
timely::execute(timely::Config::thread(), |worker| {
let (mut in1, mut in2) = worker.dataflow::<usize,_,_>(|scope| {
let (in1_handle, in1) = scope.new_input();
let (in2_handle, in2) = scope.new_input();
in1.binary_frontier(&in2, Pipeline, Pipeline, "example", |mut _default_cap, _info| {
let mut notificator = FrontierNotificator::default();
let mut stash = HashMap::new();
move |input1, input2, output| {
while let Some((time, data)) = input1.next() {
stash.entry(time.time().clone()).or_insert(Vec::new()).extend(data.drain(..));
notificator.notify_at(time.retain());
}
while let Some((time, data)) = input2.next() {
stash.entry(time.time().clone()).or_insert(Vec::new()).extend(data.drain(..));
notificator.notify_at(time.retain());
}
notificator.for_each(&[input1.frontier(), input2.frontier()], |time, _not| {
if let Some(mut vec) = stash.remove(time.time()) {
output.session(&time).give_iterator(vec.drain(..));
}
});
}
})
.container::<Vec<_>>()
.inspect_batch(|t, x| println!("{:?} -> {:?}", t, x));
(in1_handle, in2_handle)
});
for i in 1..10 {
in1.send(i - 1);
in1.advance_to(i);
in2.send(i - 1);
in2.advance_to(i);
}
}).unwrap();Sourcefn binary_notify<C2: Container, CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P1: ParallelizationContract<G::Timestamp, C1>, P2: ParallelizationContract<G::Timestamp, C2>>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
init: impl IntoIterator<Item = G::Timestamp>,
logic: L,
) -> StreamCore<G, CB::Container>
fn binary_notify<C2: Container, CB: ContainerBuilder, L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>, &mut Notificator<'_, G::Timestamp>) + 'static, P1: ParallelizationContract<G::Timestamp, C1>, P2: ParallelizationContract<G::Timestamp, C2>>( &self, other: &StreamCore<G, C2>, pact1: P1, pact2: P2, name: &str, init: impl IntoIterator<Item = G::Timestamp>, logic: L, ) -> StreamCore<G, CB::Container>
Creates a new dataflow operator that partitions its input streams by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.
§Examples
use std::collections::HashMap;
use timely::dataflow::operators::{Input, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
timely::execute(timely::Config::thread(), |worker| {
let (mut in1, mut in2) = worker.dataflow::<usize,_,_>(|scope| {
let (in1_handle, in1) = scope.new_input();
let (in2_handle, in2) = scope.new_input();
in1.binary_notify(&in2, Pipeline, Pipeline, "example", None, move |input1, input2, output, notificator| {
input1.for_each(|time, data| {
output.session(&time).give_container(data);
notificator.notify_at(time.retain());
});
input2.for_each(|time, data| {
output.session(&time).give_container(data);
notificator.notify_at(time.retain());
});
notificator.for_each(|time, _cnt, _not| {
println!("notified at {:?}", time);
});
});
(in1_handle, in2_handle)
});
for i in 1..10 {
in1.send(i - 1);
in1.advance_to(i);
in2.send(i - 1);
in2.advance_to(i);
}
}).unwrap();Sourcefn binary<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>,
fn binary<C2, CB, B, L, P1, P2>(
&self,
other: &StreamCore<G, C2>,
pact1: P1,
pact2: P2,
name: &str,
constructor: B,
) -> StreamCore<G, CB::Container>where
C2: Container,
CB: ContainerBuilder,
B: FnOnce(Capability<G::Timestamp>, OperatorInfo) -> L,
L: FnMut(&mut InputHandleCore<G::Timestamp, C1, P1::Puller>, &mut InputHandleCore<G::Timestamp, C2, P2::Puller>, &mut OutputHandleCore<'_, G::Timestamp, CB, Tee<G::Timestamp, CB::Container>>) + 'static,
P1: ParallelizationContract<G::Timestamp, C1>,
P2: ParallelizationContract<G::Timestamp, C2>,
Creates a new dataflow operator that partitions its input streams by a parallelization
strategy pact, and repeatedly invokes logic, the function returned by the function passed as constructor.
logic can read from the input streams, write to the output stream, and inspect the frontier at the inputs.
§Examples
use timely::dataflow::operators::{ToStream, Inspect, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;
timely::example(|scope| {
let stream2 = (0u64..10).to_stream(scope);
(0u64..10).to_stream(scope)
.binary(&stream2, Pipeline, Pipeline, "example", |default_cap, _info| {
let mut cap = Some(default_cap.delayed(&12));
move |input1, input2, output| {
if let Some(ref c) = cap.take() {
output.session(&c).give(100);
}
while let Some((time, data)) = input1.next() {
output.session(&time).give_container(data);
}
while let Some((time, data)) = input2.next() {
output.session(&time).give_container(data);
}
}
}).inspect(|x| println!("{:?}", x));
});Sourcefn sink<L, P>(&self, pact: P, name: &str, logic: L)where
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
fn sink<L, P>(&self, pact: P, name: &str, logic: L)where
L: FnMut(&mut FrontieredInputHandleCore<'_, G::Timestamp, C1, P::Puller>) + 'static,
P: ParallelizationContract<G::Timestamp, C1>,
Creates a new dataflow operator that partitions its input stream by a parallelization
strategy pact, and repeatedly invokes the function logic which can read from the input stream
and inspect the frontier at the input.
§Examples
use timely::dataflow::operators::{ToStream, FrontierNotificator};
use timely::dataflow::operators::generic::operator::Operator;
use timely::dataflow::channels::pact::Pipeline;
use timely::dataflow::Scope;
timely::example(|scope| {
(0u64..10)
.to_stream(scope)
.sink(Pipeline, "example", |input| {
while let Some((time, data)) = input.next() {
for datum in data.iter() {
println!("{:?}:\t{:?}", time, datum);
}
}
});
});Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.