num

Trait Integer

Source
pub trait Integer:
    Sized
    + Num
    + PartialOrd
    + Ord
    + Eq {
Show 18 methods // Required methods fn div_floor(&self, other: &Self) -> Self; fn mod_floor(&self, other: &Self) -> Self; fn gcd(&self, other: &Self) -> Self; fn lcm(&self, other: &Self) -> Self; fn is_multiple_of(&self, other: &Self) -> bool; fn is_even(&self) -> bool; fn is_odd(&self) -> bool; fn div_rem(&self, other: &Self) -> (Self, Self); // Provided methods fn div_ceil(&self, other: &Self) -> Self { ... } fn gcd_lcm(&self, other: &Self) -> (Self, Self) { ... } fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self> where Self: Clone { ... } fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) where Self: Clone + Signed { ... } fn divides(&self, other: &Self) -> bool { ... } fn div_mod_floor(&self, other: &Self) -> (Self, Self) { ... } fn next_multiple_of(&self, other: &Self) -> Self where Self: Clone { ... } fn prev_multiple_of(&self, other: &Self) -> Self where Self: Clone { ... } fn dec(&mut self) where Self: Clone { ... } fn inc(&mut self) where Self: Clone { ... }
}

Required Methods§

Source

fn div_floor(&self, other: &Self) -> Self

Floored integer division.

§Examples
assert!(( 8).div_floor(& 3) ==  2);
assert!(( 8).div_floor(&-3) == -3);
assert!((-8).div_floor(& 3) == -3);
assert!((-8).div_floor(&-3) ==  2);

assert!(( 1).div_floor(& 2) ==  0);
assert!(( 1).div_floor(&-2) == -1);
assert!((-1).div_floor(& 2) == -1);
assert!((-1).div_floor(&-2) ==  0);
Source

fn mod_floor(&self, other: &Self) -> Self

Floored integer modulo, satisfying:

assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
§Examples
assert!(( 8).mod_floor(& 3) ==  2);
assert!(( 8).mod_floor(&-3) == -1);
assert!((-8).mod_floor(& 3) ==  1);
assert!((-8).mod_floor(&-3) == -2);

assert!(( 1).mod_floor(& 2) ==  1);
assert!(( 1).mod_floor(&-2) == -1);
assert!((-1).mod_floor(& 2) ==  1);
assert!((-1).mod_floor(&-2) == -1);
Source

fn gcd(&self, other: &Self) -> Self

Greatest Common Divisor (GCD).

§Examples
assert_eq!(6.gcd(&8), 2);
assert_eq!(7.gcd(&3), 1);
Source

fn lcm(&self, other: &Self) -> Self

Lowest Common Multiple (LCM).

§Examples
assert_eq!(7.lcm(&3), 21);
assert_eq!(2.lcm(&4), 4);
assert_eq!(0.lcm(&0), 0);
Source

fn is_multiple_of(&self, other: &Self) -> bool

Returns true if self is a multiple of other.

§Examples
assert_eq!(9.is_multiple_of(&3), true);
assert_eq!(3.is_multiple_of(&9), false);
Source

fn is_even(&self) -> bool

Returns true if the number is even.

§Examples
assert_eq!(3.is_even(), false);
assert_eq!(4.is_even(), true);
Source

fn is_odd(&self) -> bool

Returns true if the number is odd.

§Examples
assert_eq!(3.is_odd(), true);
assert_eq!(4.is_odd(), false);
Source

fn div_rem(&self, other: &Self) -> (Self, Self)

Simultaneous truncated integer division and modulus. Returns (quotient, remainder).

§Examples
assert_eq!(( 8).div_rem( &3), ( 2,  2));
assert_eq!(( 8).div_rem(&-3), (-2,  2));
assert_eq!((-8).div_rem( &3), (-2, -2));
assert_eq!((-8).div_rem(&-3), ( 2, -2));

assert_eq!(( 1).div_rem( &2), ( 0,  1));
assert_eq!(( 1).div_rem(&-2), ( 0,  1));
assert_eq!((-1).div_rem( &2), ( 0, -1));
assert_eq!((-1).div_rem(&-2), ( 0, -1));

Provided Methods§

Source

fn div_ceil(&self, other: &Self) -> Self

Ceiled integer division.

§Examples
assert_eq!(( 8).div_ceil( &3),  3);
assert_eq!(( 8).div_ceil(&-3), -2);
assert_eq!((-8).div_ceil( &3), -2);
assert_eq!((-8).div_ceil(&-3),  3);

assert_eq!(( 1).div_ceil( &2), 1);
assert_eq!(( 1).div_ceil(&-2), 0);
assert_eq!((-1).div_ceil( &2), 0);
assert_eq!((-1).div_ceil(&-2), 1);
Source

fn gcd_lcm(&self, other: &Self) -> (Self, Self)

Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) together.

Potentially more efficient than calling gcd and lcm individually for identical inputs.

§Examples
assert_eq!(10.gcd_lcm(&4), (2, 20));
assert_eq!(8.gcd_lcm(&9), (1, 72));
Source

fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
where Self: Clone,

Greatest common divisor and Bézout coefficients.

§Examples
fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
    let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
    gcd == x * a + y * b
}
assert!(check(10isize, 4isize));
assert!(check(8isize,  9isize));
Source

fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
where Self: Clone + Signed,

Greatest common divisor, least common multiple, and Bézout coefficients.

Source

fn divides(&self, other: &Self) -> bool

👎Deprecated: Please use is_multiple_of instead

Deprecated, use is_multiple_of instead.

Source

fn div_mod_floor(&self, other: &Self) -> (Self, Self)

Simultaneous floored integer division and modulus. Returns (quotient, remainder).

§Examples
assert_eq!(( 8).div_mod_floor( &3), ( 2,  2));
assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
assert_eq!((-8).div_mod_floor( &3), (-3,  1));
assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));

assert_eq!(( 1).div_mod_floor( &2), ( 0,  1));
assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
assert_eq!((-1).div_mod_floor( &2), (-1,  1));
assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
Source

fn next_multiple_of(&self, other: &Self) -> Self
where Self: Clone,

Rounds up to nearest multiple of argument.

§Notes

For signed types, a.next_multiple_of(b) = a.prev_multiple_of(b.neg()).

§Examples
assert_eq!(( 16).next_multiple_of(& 8),  16);
assert_eq!(( 23).next_multiple_of(& 8),  24);
assert_eq!(( 16).next_multiple_of(&-8),  16);
assert_eq!(( 23).next_multiple_of(&-8),  16);
assert_eq!((-16).next_multiple_of(& 8), -16);
assert_eq!((-23).next_multiple_of(& 8), -16);
assert_eq!((-16).next_multiple_of(&-8), -16);
assert_eq!((-23).next_multiple_of(&-8), -24);
Source

fn prev_multiple_of(&self, other: &Self) -> Self
where Self: Clone,

Rounds down to nearest multiple of argument.

§Notes

For signed types, a.prev_multiple_of(b) = a.next_multiple_of(b.neg()).

§Examples
assert_eq!(( 16).prev_multiple_of(& 8),  16);
assert_eq!(( 23).prev_multiple_of(& 8),  16);
assert_eq!(( 16).prev_multiple_of(&-8),  16);
assert_eq!(( 23).prev_multiple_of(&-8),  24);
assert_eq!((-16).prev_multiple_of(& 8), -16);
assert_eq!((-23).prev_multiple_of(& 8), -24);
assert_eq!((-16).prev_multiple_of(&-8), -16);
assert_eq!((-23).prev_multiple_of(&-8), -16);
Source

fn dec(&mut self)
where Self: Clone,

Decrements self by one.

§Examples
let mut x: i32 = 43;
x.dec();
assert_eq!(x, 42);
Source

fn inc(&mut self)
where Self: Clone,

Increments self by one.

§Examples
let mut x: i32 = 41;
x.inc();
assert_eq!(x, 42);

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl Integer for i8

Source§

fn div_floor(&self, other: &i8) -> i8

Floored integer division

Source§

fn mod_floor(&self, other: &i8) -> i8

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &i8) -> (i8, i8)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &i8) -> i8

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &i8) -> i8

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &i8) -> (i8, i8)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &i8) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &i8) -> (i8, i8)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &i8) -> i8

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &i8) -> i8

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &i8) -> i8

Source§

fn extended_gcd_lcm(&self, other: &i8) -> (ExtendedGcd<i8>, i8)

Source§

impl Integer for i16

Source§

fn div_floor(&self, other: &i16) -> i16

Floored integer division

Source§

fn mod_floor(&self, other: &i16) -> i16

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &i16) -> (i16, i16)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &i16) -> i16

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &i16) -> i16

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &i16) -> (i16, i16)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &i16) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &i16) -> (i16, i16)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &i16) -> i16

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &i16) -> i16

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &i16) -> i16

Source§

fn extended_gcd_lcm(&self, other: &i16) -> (ExtendedGcd<i16>, i16)

Source§

impl Integer for i32

Source§

fn div_floor(&self, other: &i32) -> i32

Floored integer division

Source§

fn mod_floor(&self, other: &i32) -> i32

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &i32) -> (i32, i32)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &i32) -> i32

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &i32) -> i32

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &i32) -> (i32, i32)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &i32) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &i32) -> (i32, i32)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &i32) -> i32

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &i32) -> i32

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &i32) -> i32

Source§

fn extended_gcd_lcm(&self, other: &i32) -> (ExtendedGcd<i32>, i32)

Source§

impl Integer for i64

Source§

fn div_floor(&self, other: &i64) -> i64

Floored integer division

Source§

fn mod_floor(&self, other: &i64) -> i64

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &i64) -> (i64, i64)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &i64) -> i64

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &i64) -> i64

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &i64) -> (i64, i64)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &i64) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &i64) -> (i64, i64)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &i64) -> i64

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &i64) -> i64

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &i64) -> i64

Source§

fn extended_gcd_lcm(&self, other: &i64) -> (ExtendedGcd<i64>, i64)

Source§

impl Integer for i128

Source§

fn div_floor(&self, other: &i128) -> i128

Floored integer division

Source§

fn mod_floor(&self, other: &i128) -> i128

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &i128) -> (i128, i128)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &i128) -> i128

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &i128) -> i128

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &i128) -> (i128, i128)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &i128) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &i128) -> (i128, i128)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &i128) -> i128

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &i128) -> i128

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &i128) -> i128

Source§

fn extended_gcd_lcm(&self, other: &i128) -> (ExtendedGcd<i128>, i128)

Source§

impl Integer for isize

Source§

fn div_floor(&self, other: &isize) -> isize

Floored integer division

Source§

fn mod_floor(&self, other: &isize) -> isize

Floored integer modulo

Source§

fn div_mod_floor(&self, other: &isize) -> (isize, isize)

Calculates div_floor and mod_floor simultaneously

Source§

fn gcd(&self, other: &isize) -> isize

Calculates the Greatest Common Divisor (GCD) of the number and other. The result is always non-negative.

Source§

fn lcm(&self, other: &isize) -> isize

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &isize) -> (isize, isize)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &isize) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2

Source§

fn div_rem(&self, other: &isize) -> (isize, isize)

Simultaneous truncated integer division and modulus.

Source§

fn next_multiple_of(&self, other: &isize) -> isize

Rounds up to nearest multiple of argument.

Source§

fn prev_multiple_of(&self, other: &isize) -> isize

Rounds down to nearest multiple of argument.

Source§

fn div_ceil(&self, other: &isize) -> isize

Source§

fn extended_gcd_lcm(&self, other: &isize) -> (ExtendedGcd<isize>, isize)

Source§

impl Integer for u8

Source§

fn div_floor(&self, other: &u8) -> u8

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &u8) -> u8

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &u8) -> u8

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &u8) -> u8

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &u8) -> (u8, u8)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &u8) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &u8) -> (u8, u8)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &u8) -> u8

Source§

fn extended_gcd_lcm(&self, other: &u8) -> (ExtendedGcd<u8>, u8)

Source§

impl Integer for u16

Source§

fn div_floor(&self, other: &u16) -> u16

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &u16) -> u16

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &u16) -> u16

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &u16) -> u16

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &u16) -> (u16, u16)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &u16) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &u16) -> (u16, u16)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &u16) -> u16

Source§

fn extended_gcd_lcm(&self, other: &u16) -> (ExtendedGcd<u16>, u16)

Source§

impl Integer for u32

Source§

fn div_floor(&self, other: &u32) -> u32

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &u32) -> u32

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &u32) -> u32

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &u32) -> u32

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &u32) -> (u32, u32)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &u32) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &u32) -> (u32, u32)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &u32) -> u32

Source§

fn extended_gcd_lcm(&self, other: &u32) -> (ExtendedGcd<u32>, u32)

Source§

impl Integer for u64

Source§

fn div_floor(&self, other: &u64) -> u64

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &u64) -> u64

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &u64) -> u64

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &u64) -> u64

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &u64) -> (u64, u64)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &u64) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &u64) -> (u64, u64)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &u64) -> u64

Source§

fn extended_gcd_lcm(&self, other: &u64) -> (ExtendedGcd<u64>, u64)

Source§

impl Integer for u128

Source§

fn div_floor(&self, other: &u128) -> u128

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &u128) -> u128

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &u128) -> u128

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &u128) -> u128

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &u128) -> (u128, u128)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &u128) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &u128) -> (u128, u128)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &u128) -> u128

Source§

fn extended_gcd_lcm(&self, other: &u128) -> (ExtendedGcd<u128>, u128)

Source§

impl Integer for usize

Source§

fn div_floor(&self, other: &usize) -> usize

Unsigned integer division. Returns the same result as div (/).

Source§

fn mod_floor(&self, other: &usize) -> usize

Unsigned integer modulo operation. Returns the same result as rem (%).

Source§

fn gcd(&self, other: &usize) -> usize

Calculates the Greatest Common Divisor (GCD) of the number and other

Source§

fn lcm(&self, other: &usize) -> usize

Calculates the Lowest Common Multiple (LCM) of the number and other.

Source§

fn gcd_lcm(&self, other: &usize) -> (usize, usize)

Calculates the Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) of the number and other.

Source§

fn is_multiple_of(&self, other: &usize) -> bool

Returns true if the number is a multiple of other.

Source§

fn is_even(&self) -> bool

Returns true if the number is divisible by 2.

Source§

fn is_odd(&self) -> bool

Returns true if the number is not divisible by 2.

Source§

fn div_rem(&self, other: &usize) -> (usize, usize)

Simultaneous truncated integer division and modulus.

Source§

fn div_ceil(&self, other: &usize) -> usize

Source§

fn extended_gcd_lcm(&self, other: &usize) -> (ExtendedGcd<usize>, usize)

Implementors§