Struct ahash::AHashMap

source ·
pub struct AHashMap<K, V, S = RandomState>(/* private fields */);
Expand description

A HashMap using RandomState to hash the items. (Requires the std feature to be enabled.)

Implementations§

source§

impl<K, V> AHashMap<K, V, RandomState>

source

pub fn new() -> Self

source

pub fn with_capacity(capacity: usize) -> Self

source§

impl<K, V, S> AHashMap<K, V, S>
where S: BuildHasher,

source

pub fn with_hasher(hash_builder: S) -> Self

source

pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self

source§

impl<K, V, S> AHashMap<K, V, S>
where K: Hash + Eq, S: BuildHasher,

source

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
source

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
source

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
source

pub fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the [module-level documentation] for more.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
source

pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

Methods from Deref<Target = HashMap<K, V, S>>§

1.0.0 · source

pub fn capacity(&self) -> usize

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

§Examples
use std::collections::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);
1.0.0 · source

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for key in map.keys() {
    println!("{key}");
}
§Performance

In the current implementation, iterating over keys takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · source

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.10.0 · source

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{val}");
}
§Performance

In the current implementation, iterating over values takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · source

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

§Examples
use std::collections::HashMap;

let map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

for (key, val) in map.iter() {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · source

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

§Examples
use std::collections::HashMap;

let mut map = HashMap::from([
    ("a", 1),
    ("b", 2),
    ("c", 3),
]);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {key} val: {val}");
}
§Performance

In the current implementation, iterating over map takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · source

pub fn len(&self) -> usize

Returns the number of elements in the map.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
1.0.0 · source

pub fn is_empty(&self) -> bool

Returns true if the map contains no elements.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
1.6.0 · source

pub fn drain(&mut self) -> Drain<'_, K, V>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the map to optimize its implementation.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());
source

pub fn extract_if<F>(&mut self, pred: F) -> ExtractIf<'_, K, V, F>
where F: FnMut(&K, &mut V) -> bool,

🔬This is a nightly-only experimental API. (hash_extract_if)

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, the element is removed from the map and yielded. If the closure returns false, or panics, the element remains in the map and will not be yielded.

Note that extract_if lets you mutate every value in the filter closure, regardless of whether you choose to keep or remove it.

If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Use retain with a negated predicate if you do not need the returned iterator.

§Examples

Splitting a map into even and odd keys, reusing the original map:

#![feature(hash_extract_if)]
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let extracted: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect();

let mut evens = extracted.keys().copied().collect::<Vec<_>>();
let mut odds = map.keys().copied().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
1.18.0 · source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&K, &mut V) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) for which f(&k, &mut v) returns false. The elements are visited in unsorted (and unspecified) order.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);
§Performance

In the current implementation, this operation takes O(capacity) time instead of O(len) because it internally visits empty buckets too.

1.0.0 · source

pub fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

§Examples
use std::collections::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());
1.9.0 · source

pub fn hasher(&self) -> &S

Returns a reference to the map’s BuildHasher.

§Examples
use std::collections::HashMap;
use std::hash::RandomState;

let hasher = RandomState::new();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &RandomState = map.hasher();
1.0.0 · source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling reserve, capacity will be greater than or equal to self.len() + additional. Does nothing if capacity is already sufficient.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use std::collections::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);
1.57.0 · source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>

Tries to reserve capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to speculatively avoid frequent reallocations. After calling try_reserve, capacity will be greater than or equal to self.len() + additional if it returns Ok(()). Does nothing if capacity is already sufficient.

§Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

§Examples
use std::collections::HashMap;

let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on a handful of bytes?");
1.0.0 · source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
1.56.0 · source

pub fn shrink_to(&mut self, min_capacity: usize)

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

If the current capacity is less than the lower limit, this is a no-op.

§Examples
use std::collections::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
1.0.0 · source

pub fn entry(&mut self, key: K) -> Entry<'_, K, V>

Gets the given key’s corresponding entry in the map for in-place manipulation.

§Examples
use std::collections::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    letters.entry(ch).and_modify(|counter| *counter += 1).or_insert(1);
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
1.0.0 · source

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
1.40.0 · source

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
source

pub fn get_many_mut<Q, const N: usize>( &mut self, ks: [&Q; N] ) -> Option<[&mut V; N]>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

🔬This is a nightly-only experimental API. (map_many_mut)

Attempts to get mutable references to N values in the map at once.

Returns an array of length N with the results of each query. For soundness, at most one mutable reference will be returned to any value. None will be returned if any of the keys are duplicates or missing.

§Examples
#![feature(map_many_mut)]
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    Some([
        &mut 1807,
        &mut 1800,
    ]),
);

// Missing keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(got, None);

// Duplicate keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "Athenæum",
]);
assert_eq!(got, None);
source

pub unsafe fn get_many_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N] ) -> Option<[&mut V; N]>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

🔬This is a nightly-only experimental API. (map_many_mut)

Attempts to get mutable references to N values in the map at once, without validating that the values are unique.

Returns an array of length N with the results of each query. None will be returned if any of the keys are missing.

For a safe alternative see get_many_mut.

§Safety

Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.

§Examples
#![feature(map_many_mut)]
use std::collections::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    Some([
        &mut 1807,
        &mut 1800,
    ]),
);

// Missing keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(got, None);
1.0.0 · source

pub fn contains_key<Q>(&self, k: &Q) -> bool
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
1.0.0 · source

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
1.0.0 · source

pub fn insert(&mut self, k: K, v: V) -> Option<V>

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
source

pub fn try_insert( &mut self, key: K, value: V ) -> Result<&mut V, OccupiedError<'_, K, V>>

🔬This is a nightly-only experimental API. (map_try_insert)

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

§Examples

Basic usage:

#![feature(map_try_insert)]

use std::collections::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");
1.0.0 · source

pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
1.27.0 · source

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use std::collections::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);
source

pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S>

🔬This is a nightly-only experimental API. (hash_raw_entry)

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it’s much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).

source

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S>

🔬This is a nightly-only experimental API. (hash_raw_entry)

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations§

source§

impl<K: Clone, V: Clone, S: Clone> Clone for AHashMap<K, V, S>

source§

fn clone(&self) -> AHashMap<K, V, S>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<K, V, S> Debug for AHashMap<K, V, S>
where K: Debug, V: Debug, S: BuildHasher,

source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<K, V> Default for AHashMap<K, V, RandomState>

source§

fn default() -> AHashMap<K, V, RandomState>

Returns the “default value” for a type. Read more
source§

impl<K, V, S> Deref for AHashMap<K, V, S>

§

type Target = HashMap<K, V, S>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<K, V, S> DerefMut for AHashMap<K, V, S>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<'a, K, V, S> Extend<(&'a K, &'a V)> for AHashMap<K, V, S>
where K: Eq + Hash + Copy + 'a, V: Copy + 'a, S: BuildHasher,

source§

fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<K, V, S> Extend<(K, V)> for AHashMap<K, V, S>
where K: Eq + Hash, S: BuildHasher,

source§

fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<K, V, const N: usize> From<[(K, V); N]> for AHashMap<K, V>
where K: Eq + Hash,

source§

fn from(arr: [(K, V); N]) -> Self

§Examples
use ahash::AHashMap;

let map1 = AHashMap::from([(1, 2), (3, 4)]);
let map2: AHashMap<_, _> = [(1, 2), (3, 4)].into();
assert_eq!(map1, map2);
source§

impl<K, V> From<HashMap<K, V, RandomState>> for AHashMap<K, V>

source§

fn from(item: HashMap<K, V, RandomState>) -> Self

Converts to this type from the input type.
source§

impl<K, V, S> FromIterator<(K, V)> for AHashMap<K, V, S>
where K: Eq + Hash, S: BuildHasher + Default,

source§

fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self

Creates a value from an iterator. Read more
source§

impl<K, Q, V, S> Index<&Q> for AHashMap<K, V, S>
where K: Eq + Hash + Borrow<Q>, Q: Eq + Hash + ?Sized, S: BuildHasher,

source§

fn index(&self, key: &Q) -> &V

Returns a reference to the value corresponding to the supplied key.

§Panics

Panics if the key is not present in the HashMap.

§

type Output = V

The returned type after indexing.
source§

impl<K, V> Into<HashMap<K, V, RandomState>> for AHashMap<K, V>

source§

fn into(self) -> HashMap<K, V, RandomState>

Converts this type into the (usually inferred) input type.
source§

impl<'a, K, V, S> IntoIterator for &'a AHashMap<K, V, S>

§

type Item = (&'a K, &'a V)

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, K, V, S> IntoIterator for &'a mut AHashMap<K, V, S>

§

type Item = (&'a K, &'a mut V)

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<K, V, S> IntoIterator for AHashMap<K, V, S>

§

type Item = (K, V)

The type of the elements being iterated over.
§

type IntoIter = IntoIter<K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<K, V, S> PartialEq for AHashMap<K, V, S>
where K: Eq + Hash, V: PartialEq, S: BuildHasher,

source§

fn eq(&self, other: &AHashMap<K, V, S>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<K, V, S> Eq for AHashMap<K, V, S>
where K: Eq + Hash, V: Eq, S: BuildHasher,

source§

impl<K, V, S> UnwindSafe for AHashMap<K, V, S>
where K: UnwindSafe, V: UnwindSafe,

Auto Trait Implementations§

§

impl<K, V, S> RefUnwindSafe for AHashMap<K, V, S>

§

impl<K, V, S> Send for AHashMap<K, V, S>
where K: Send, S: Send, V: Send,

§

impl<K, V, S> Sync for AHashMap<K, V, S>
where K: Sync, S: Sync, V: Sync,

§

impl<K, V, S> Unpin for AHashMap<K, V, S>
where K: Unpin, S: Unpin, V: Unpin,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.