pub trait Integer:
Sized
+ Num
+ PartialOrd
+ Ord
+ Eq {
Show 18 methods
// Required methods
fn div_floor(&self, other: &Self) -> Self;
fn mod_floor(&self, other: &Self) -> Self;
fn gcd(&self, other: &Self) -> Self;
fn lcm(&self, other: &Self) -> Self;
fn is_multiple_of(&self, other: &Self) -> bool;
fn is_even(&self) -> bool;
fn is_odd(&self) -> bool;
fn div_rem(&self, other: &Self) -> (Self, Self);
// Provided methods
fn div_ceil(&self, other: &Self) -> Self { ... }
fn gcd_lcm(&self, other: &Self) -> (Self, Self) { ... }
fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
where Self: Clone { ... }
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
where Self: Clone + Signed { ... }
fn divides(&self, other: &Self) -> bool { ... }
fn div_mod_floor(&self, other: &Self) -> (Self, Self) { ... }
fn next_multiple_of(&self, other: &Self) -> Self
where Self: Clone { ... }
fn prev_multiple_of(&self, other: &Self) -> Self
where Self: Clone { ... }
fn dec(&mut self)
where Self: Clone { ... }
fn inc(&mut self)
where Self: Clone { ... }
}
Required Methods§
Sourcefn div_floor(&self, other: &Self) -> Self
fn div_floor(&self, other: &Self) -> Self
Floored integer division.
§Examples
assert!(( 8).div_floor(& 3) == 2);
assert!(( 8).div_floor(&-3) == -3);
assert!((-8).div_floor(& 3) == -3);
assert!((-8).div_floor(&-3) == 2);
assert!(( 1).div_floor(& 2) == 0);
assert!(( 1).div_floor(&-2) == -1);
assert!((-1).div_floor(& 2) == -1);
assert!((-1).div_floor(&-2) == 0);
Sourcefn mod_floor(&self, other: &Self) -> Self
fn mod_floor(&self, other: &Self) -> Self
Floored integer modulo, satisfying:
assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
§Examples
assert!(( 8).mod_floor(& 3) == 2);
assert!(( 8).mod_floor(&-3) == -1);
assert!((-8).mod_floor(& 3) == 1);
assert!((-8).mod_floor(&-3) == -2);
assert!(( 1).mod_floor(& 2) == 1);
assert!(( 1).mod_floor(&-2) == -1);
assert!((-1).mod_floor(& 2) == 1);
assert!((-1).mod_floor(&-2) == -1);
Sourcefn lcm(&self, other: &Self) -> Self
fn lcm(&self, other: &Self) -> Self
Lowest Common Multiple (LCM).
§Examples
assert_eq!(7.lcm(&3), 21);
assert_eq!(2.lcm(&4), 4);
assert_eq!(0.lcm(&0), 0);
Sourcefn is_multiple_of(&self, other: &Self) -> bool
fn is_multiple_of(&self, other: &Self) -> bool
Returns true
if self
is a multiple of other
.
§Examples
assert_eq!(9.is_multiple_of(&3), true);
assert_eq!(3.is_multiple_of(&9), false);
Sourcefn is_even(&self) -> bool
fn is_even(&self) -> bool
Returns true
if the number is even.
§Examples
assert_eq!(3.is_even(), false);
assert_eq!(4.is_even(), true);
Sourcefn is_odd(&self) -> bool
fn is_odd(&self) -> bool
Returns true
if the number is odd.
§Examples
assert_eq!(3.is_odd(), true);
assert_eq!(4.is_odd(), false);
Sourcefn div_rem(&self, other: &Self) -> (Self, Self)
fn div_rem(&self, other: &Self) -> (Self, Self)
Simultaneous truncated integer division and modulus.
Returns (quotient, remainder)
.
§Examples
assert_eq!(( 8).div_rem( &3), ( 2, 2));
assert_eq!(( 8).div_rem(&-3), (-2, 2));
assert_eq!((-8).div_rem( &3), (-2, -2));
assert_eq!((-8).div_rem(&-3), ( 2, -2));
assert_eq!(( 1).div_rem( &2), ( 0, 1));
assert_eq!(( 1).div_rem(&-2), ( 0, 1));
assert_eq!((-1).div_rem( &2), ( 0, -1));
assert_eq!((-1).div_rem(&-2), ( 0, -1));
Provided Methods§
Sourcefn div_ceil(&self, other: &Self) -> Self
fn div_ceil(&self, other: &Self) -> Self
Ceiled integer division.
§Examples
assert_eq!(( 8).div_ceil( &3), 3);
assert_eq!(( 8).div_ceil(&-3), -2);
assert_eq!((-8).div_ceil( &3), -2);
assert_eq!((-8).div_ceil(&-3), 3);
assert_eq!(( 1).div_ceil( &2), 1);
assert_eq!(( 1).div_ceil(&-2), 0);
assert_eq!((-1).div_ceil( &2), 0);
assert_eq!((-1).div_ceil(&-2), 1);
Sourcefn gcd_lcm(&self, other: &Self) -> (Self, Self)
fn gcd_lcm(&self, other: &Self) -> (Self, Self)
Greatest Common Divisor (GCD) and Lowest Common Multiple (LCM) together.
Potentially more efficient than calling gcd
and lcm
individually for identical inputs.
§Examples
assert_eq!(10.gcd_lcm(&4), (2, 20));
assert_eq!(8.gcd_lcm(&9), (1, 72));
Sourcefn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>where
Self: Clone,
fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>where
Self: Clone,
Greatest common divisor and Bézout coefficients.
§Examples
fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
gcd == x * a + y * b
}
assert!(check(10isize, 4isize));
assert!(check(8isize, 9isize));
Sourcefn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
Greatest common divisor, least common multiple, and Bézout coefficients.
Sourcefn divides(&self, other: &Self) -> bool
👎Deprecated: Please use is_multiple_of instead
fn divides(&self, other: &Self) -> bool
Deprecated, use is_multiple_of
instead.
Sourcefn div_mod_floor(&self, other: &Self) -> (Self, Self)
fn div_mod_floor(&self, other: &Self) -> (Self, Self)
Simultaneous floored integer division and modulus.
Returns (quotient, remainder)
.
§Examples
assert_eq!(( 8).div_mod_floor( &3), ( 2, 2));
assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
assert_eq!((-8).div_mod_floor( &3), (-3, 1));
assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
assert_eq!(( 1).div_mod_floor( &2), ( 0, 1));
assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
assert_eq!((-1).div_mod_floor( &2), (-1, 1));
assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
Sourcefn next_multiple_of(&self, other: &Self) -> Selfwhere
Self: Clone,
fn next_multiple_of(&self, other: &Self) -> Selfwhere
Self: Clone,
Rounds up to nearest multiple of argument.
§Notes
For signed types, a.next_multiple_of(b) = a.prev_multiple_of(b.neg())
.
§Examples
assert_eq!(( 16).next_multiple_of(& 8), 16);
assert_eq!(( 23).next_multiple_of(& 8), 24);
assert_eq!(( 16).next_multiple_of(&-8), 16);
assert_eq!(( 23).next_multiple_of(&-8), 16);
assert_eq!((-16).next_multiple_of(& 8), -16);
assert_eq!((-23).next_multiple_of(& 8), -16);
assert_eq!((-16).next_multiple_of(&-8), -16);
assert_eq!((-23).next_multiple_of(&-8), -24);
Sourcefn prev_multiple_of(&self, other: &Self) -> Selfwhere
Self: Clone,
fn prev_multiple_of(&self, other: &Self) -> Selfwhere
Self: Clone,
Rounds down to nearest multiple of argument.
§Notes
For signed types, a.prev_multiple_of(b) = a.next_multiple_of(b.neg())
.
§Examples
assert_eq!(( 16).prev_multiple_of(& 8), 16);
assert_eq!(( 23).prev_multiple_of(& 8), 16);
assert_eq!(( 16).prev_multiple_of(&-8), 16);
assert_eq!(( 23).prev_multiple_of(&-8), 24);
assert_eq!((-16).prev_multiple_of(& 8), -16);
assert_eq!((-23).prev_multiple_of(& 8), -24);
assert_eq!((-16).prev_multiple_of(&-8), -16);
assert_eq!((-23).prev_multiple_of(&-8), -16);
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.
Implementations on Foreign Types§
Source§impl Integer for i8
impl Integer for i8
Source§fn div_mod_floor(&self, other: &i8) -> (i8, i8)
fn div_mod_floor(&self, other: &i8) -> (i8, i8)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &i8) -> i8
fn gcd(&self, other: &i8) -> i8
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &i8) -> i8
fn lcm(&self, other: &i8) -> i8
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &i8) -> (i8, i8)
fn gcd_lcm(&self, other: &i8) -> (i8, i8)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &i8) -> bool
fn is_multiple_of(&self, other: &i8) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &i8) -> (i8, i8)
fn div_rem(&self, other: &i8) -> (i8, i8)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &i8) -> i8
fn next_multiple_of(&self, other: &i8) -> i8
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &i8) -> i8
fn prev_multiple_of(&self, other: &i8) -> i8
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &i8) -> i8
fn extended_gcd_lcm(&self, other: &i8) -> (ExtendedGcd<i8>, i8)
Source§impl Integer for i16
impl Integer for i16
Source§fn div_mod_floor(&self, other: &i16) -> (i16, i16)
fn div_mod_floor(&self, other: &i16) -> (i16, i16)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &i16) -> i16
fn gcd(&self, other: &i16) -> i16
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &i16) -> i16
fn lcm(&self, other: &i16) -> i16
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &i16) -> (i16, i16)
fn gcd_lcm(&self, other: &i16) -> (i16, i16)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &i16) -> bool
fn is_multiple_of(&self, other: &i16) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &i16) -> (i16, i16)
fn div_rem(&self, other: &i16) -> (i16, i16)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &i16) -> i16
fn next_multiple_of(&self, other: &i16) -> i16
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &i16) -> i16
fn prev_multiple_of(&self, other: &i16) -> i16
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &i16) -> i16
fn extended_gcd_lcm(&self, other: &i16) -> (ExtendedGcd<i16>, i16)
Source§impl Integer for i32
impl Integer for i32
Source§fn div_mod_floor(&self, other: &i32) -> (i32, i32)
fn div_mod_floor(&self, other: &i32) -> (i32, i32)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &i32) -> i32
fn gcd(&self, other: &i32) -> i32
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &i32) -> i32
fn lcm(&self, other: &i32) -> i32
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &i32) -> (i32, i32)
fn gcd_lcm(&self, other: &i32) -> (i32, i32)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &i32) -> bool
fn is_multiple_of(&self, other: &i32) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &i32) -> (i32, i32)
fn div_rem(&self, other: &i32) -> (i32, i32)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &i32) -> i32
fn next_multiple_of(&self, other: &i32) -> i32
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &i32) -> i32
fn prev_multiple_of(&self, other: &i32) -> i32
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &i32) -> i32
fn extended_gcd_lcm(&self, other: &i32) -> (ExtendedGcd<i32>, i32)
Source§impl Integer for i64
impl Integer for i64
Source§fn div_mod_floor(&self, other: &i64) -> (i64, i64)
fn div_mod_floor(&self, other: &i64) -> (i64, i64)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &i64) -> i64
fn gcd(&self, other: &i64) -> i64
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &i64) -> i64
fn lcm(&self, other: &i64) -> i64
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &i64) -> (i64, i64)
fn gcd_lcm(&self, other: &i64) -> (i64, i64)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &i64) -> bool
fn is_multiple_of(&self, other: &i64) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &i64) -> (i64, i64)
fn div_rem(&self, other: &i64) -> (i64, i64)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &i64) -> i64
fn next_multiple_of(&self, other: &i64) -> i64
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &i64) -> i64
fn prev_multiple_of(&self, other: &i64) -> i64
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &i64) -> i64
fn extended_gcd_lcm(&self, other: &i64) -> (ExtendedGcd<i64>, i64)
Source§impl Integer for i128
impl Integer for i128
Source§fn div_mod_floor(&self, other: &i128) -> (i128, i128)
fn div_mod_floor(&self, other: &i128) -> (i128, i128)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &i128) -> i128
fn gcd(&self, other: &i128) -> i128
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &i128) -> i128
fn lcm(&self, other: &i128) -> i128
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &i128) -> (i128, i128)
fn gcd_lcm(&self, other: &i128) -> (i128, i128)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &i128) -> bool
fn is_multiple_of(&self, other: &i128) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &i128) -> (i128, i128)
fn div_rem(&self, other: &i128) -> (i128, i128)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &i128) -> i128
fn next_multiple_of(&self, other: &i128) -> i128
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &i128) -> i128
fn prev_multiple_of(&self, other: &i128) -> i128
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &i128) -> i128
fn extended_gcd_lcm(&self, other: &i128) -> (ExtendedGcd<i128>, i128)
Source§impl Integer for isize
impl Integer for isize
Source§fn div_mod_floor(&self, other: &isize) -> (isize, isize)
fn div_mod_floor(&self, other: &isize) -> (isize, isize)
Calculates div_floor
and mod_floor
simultaneously
Source§fn gcd(&self, other: &isize) -> isize
fn gcd(&self, other: &isize) -> isize
Calculates the Greatest Common Divisor (GCD) of the number and
other
. The result is always non-negative.
Source§fn lcm(&self, other: &isize) -> isize
fn lcm(&self, other: &isize) -> isize
Calculates the Lowest Common Multiple (LCM) of the number and
other
.
Source§fn gcd_lcm(&self, other: &isize) -> (isize, isize)
fn gcd_lcm(&self, other: &isize) -> (isize, isize)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &isize) -> bool
fn is_multiple_of(&self, other: &isize) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &isize) -> (isize, isize)
fn div_rem(&self, other: &isize) -> (isize, isize)
Simultaneous truncated integer division and modulus.
Source§fn next_multiple_of(&self, other: &isize) -> isize
fn next_multiple_of(&self, other: &isize) -> isize
Rounds up to nearest multiple of argument.
Source§fn prev_multiple_of(&self, other: &isize) -> isize
fn prev_multiple_of(&self, other: &isize) -> isize
Rounds down to nearest multiple of argument.
fn div_ceil(&self, other: &isize) -> isize
fn extended_gcd_lcm(&self, other: &isize) -> (ExtendedGcd<isize>, isize)
Source§impl Integer for u8
impl Integer for u8
Source§fn div_floor(&self, other: &u8) -> u8
fn div_floor(&self, other: &u8) -> u8
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &u8) -> u8
fn mod_floor(&self, other: &u8) -> u8
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &u8) -> u8
fn gcd(&self, other: &u8) -> u8
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &u8) -> u8
fn lcm(&self, other: &u8) -> u8
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &u8) -> (u8, u8)
fn gcd_lcm(&self, other: &u8) -> (u8, u8)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &u8) -> bool
fn is_multiple_of(&self, other: &u8) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &u8) -> (u8, u8)
fn div_rem(&self, other: &u8) -> (u8, u8)
Simultaneous truncated integer division and modulus.
fn div_ceil(&self, other: &u8) -> u8
fn extended_gcd_lcm(&self, other: &u8) -> (ExtendedGcd<u8>, u8)
Source§impl Integer for u16
impl Integer for u16
Source§fn div_floor(&self, other: &u16) -> u16
fn div_floor(&self, other: &u16) -> u16
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &u16) -> u16
fn mod_floor(&self, other: &u16) -> u16
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &u16) -> u16
fn gcd(&self, other: &u16) -> u16
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &u16) -> u16
fn lcm(&self, other: &u16) -> u16
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &u16) -> (u16, u16)
fn gcd_lcm(&self, other: &u16) -> (u16, u16)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &u16) -> bool
fn is_multiple_of(&self, other: &u16) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &u16) -> (u16, u16)
fn div_rem(&self, other: &u16) -> (u16, u16)
Simultaneous truncated integer division and modulus.
fn div_ceil(&self, other: &u16) -> u16
fn extended_gcd_lcm(&self, other: &u16) -> (ExtendedGcd<u16>, u16)
Source§impl Integer for u32
impl Integer for u32
Source§fn div_floor(&self, other: &u32) -> u32
fn div_floor(&self, other: &u32) -> u32
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &u32) -> u32
fn mod_floor(&self, other: &u32) -> u32
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &u32) -> u32
fn gcd(&self, other: &u32) -> u32
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &u32) -> u32
fn lcm(&self, other: &u32) -> u32
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &u32) -> (u32, u32)
fn gcd_lcm(&self, other: &u32) -> (u32, u32)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &u32) -> bool
fn is_multiple_of(&self, other: &u32) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &u32) -> (u32, u32)
fn div_rem(&self, other: &u32) -> (u32, u32)
Simultaneous truncated integer division and modulus.
fn div_ceil(&self, other: &u32) -> u32
fn extended_gcd_lcm(&self, other: &u32) -> (ExtendedGcd<u32>, u32)
Source§impl Integer for u64
impl Integer for u64
Source§fn div_floor(&self, other: &u64) -> u64
fn div_floor(&self, other: &u64) -> u64
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &u64) -> u64
fn mod_floor(&self, other: &u64) -> u64
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &u64) -> u64
fn gcd(&self, other: &u64) -> u64
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &u64) -> u64
fn lcm(&self, other: &u64) -> u64
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &u64) -> (u64, u64)
fn gcd_lcm(&self, other: &u64) -> (u64, u64)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &u64) -> bool
fn is_multiple_of(&self, other: &u64) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &u64) -> (u64, u64)
fn div_rem(&self, other: &u64) -> (u64, u64)
Simultaneous truncated integer division and modulus.
fn div_ceil(&self, other: &u64) -> u64
fn extended_gcd_lcm(&self, other: &u64) -> (ExtendedGcd<u64>, u64)
Source§impl Integer for u128
impl Integer for u128
Source§fn div_floor(&self, other: &u128) -> u128
fn div_floor(&self, other: &u128) -> u128
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &u128) -> u128
fn mod_floor(&self, other: &u128) -> u128
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &u128) -> u128
fn gcd(&self, other: &u128) -> u128
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &u128) -> u128
fn lcm(&self, other: &u128) -> u128
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &u128) -> (u128, u128)
fn gcd_lcm(&self, other: &u128) -> (u128, u128)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &u128) -> bool
fn is_multiple_of(&self, other: &u128) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &u128) -> (u128, u128)
fn div_rem(&self, other: &u128) -> (u128, u128)
Simultaneous truncated integer division and modulus.
fn div_ceil(&self, other: &u128) -> u128
fn extended_gcd_lcm(&self, other: &u128) -> (ExtendedGcd<u128>, u128)
Source§impl Integer for usize
impl Integer for usize
Source§fn div_floor(&self, other: &usize) -> usize
fn div_floor(&self, other: &usize) -> usize
Unsigned integer division. Returns the same result as div
(/
).
Source§fn mod_floor(&self, other: &usize) -> usize
fn mod_floor(&self, other: &usize) -> usize
Unsigned integer modulo operation. Returns the same result as rem
(%
).
Source§fn gcd(&self, other: &usize) -> usize
fn gcd(&self, other: &usize) -> usize
Calculates the Greatest Common Divisor (GCD) of the number and other
Source§fn lcm(&self, other: &usize) -> usize
fn lcm(&self, other: &usize) -> usize
Calculates the Lowest Common Multiple (LCM) of the number and other
.
Source§fn gcd_lcm(&self, other: &usize) -> (usize, usize)
fn gcd_lcm(&self, other: &usize) -> (usize, usize)
Calculates the Greatest Common Divisor (GCD) and
Lowest Common Multiple (LCM) of the number and other
.
Source§fn is_multiple_of(&self, other: &usize) -> bool
fn is_multiple_of(&self, other: &usize) -> bool
Returns true
if the number is a multiple of other
.
Source§fn div_rem(&self, other: &usize) -> (usize, usize)
fn div_rem(&self, other: &usize) -> (usize, usize)
Simultaneous truncated integer division and modulus.