pub struct AsyncBencher<'a, 'b, A: AsyncExecutor, M: Measurement = WallTime> { /* private fields */ }
Expand description
Async/await variant of the Bencher struct.
Implementations§
Source§impl<'a, 'b, A: AsyncExecutor, M: Measurement> AsyncBencher<'a, 'b, A, M>
impl<'a, 'b, A: AsyncExecutor, M: Measurement> AsyncBencher<'a, 'b, A, M>
Sourcepub fn iter<O, R, F>(&mut self, routine: R)
pub fn iter<O, R, F>(&mut self, routine: R)
Times a routine
by executing it many times and timing the total elapsed time.
Prefer this timing loop when routine
returns a value that doesn’t have a destructor.
§Timing model
Note that the AsyncBencher
also times the time required to destroy the output of routine()
.
Therefore prefer this timing loop when the runtime of mem::drop(O)
is negligible compared
to the runtime of the routine
.
elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
§Example
#[macro_use] extern crate criterion;
use criterion::*;
use criterion::async_executor::FuturesExecutor;
// The function to benchmark
async fn foo() {
// ...
}
fn bench(c: &mut Criterion) {
c.bench_function("iter", move |b| {
b.to_async(FuturesExecutor).iter(|| async { foo().await } )
});
}
criterion_group!(benches, bench);
criterion_main!(benches);
Sourcepub fn iter_custom<R, F>(&mut self, routine: R)
pub fn iter_custom<R, F>(&mut self, routine: R)
Times a routine
by executing it many times and relying on routine
to measure its own execution time.
Prefer this timing loop in cases where routine
has to do its own measurements to
get accurate timing information (for example in multi-threaded scenarios where you spawn
and coordinate with multiple threads).
§Timing model
Custom, the timing model is whatever is returned as the Duration from routine
.
§Example
#[macro_use] extern crate criterion;
use criterion::*;
use criterion::black_box;
use criterion::async_executor::FuturesExecutor;
use std::time::Instant;
async fn foo() {
// ...
}
fn bench(c: &mut Criterion) {
c.bench_function("iter", move |b| {
b.to_async(FuturesExecutor).iter_custom(|iters| {
async move {
let start = Instant::now();
for _i in 0..iters {
black_box(foo().await);
}
start.elapsed()
}
})
});
}
criterion_group!(benches, bench);
criterion_main!(benches);
Sourcepub fn iter_with_large_drop<O, R, F>(&mut self, routine: R)
pub fn iter_with_large_drop<O, R, F>(&mut self, routine: R)
Times a routine
by collecting its output on each iteration. This avoids timing the
destructor of the value returned by routine
.
WARNING: This requires O(iters * mem::size_of::<O>())
of memory, and iters
is not under the
control of the caller. If this causes out-of-memory errors, use iter_batched
instead.
§Timing model
elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
§Example
#[macro_use] extern crate criterion;
use criterion::*;
use criterion::async_executor::FuturesExecutor;
async fn create_vector() -> Vec<u64> {
// ...
}
fn bench(c: &mut Criterion) {
c.bench_function("with_drop", move |b| {
// This will avoid timing the Vec::drop.
b.to_async(FuturesExecutor).iter_with_large_drop(|| async { create_vector().await })
});
}
criterion_group!(benches, bench);
criterion_main!(benches);
Sourcepub fn iter_batched<I, O, S, R, F>(
&mut self,
setup: S,
routine: R,
size: BatchSize,
)
pub fn iter_batched<I, O, S, R, F>( &mut self, setup: S, routine: R, size: BatchSize, )
Times a routine
that requires some input by generating a batch of input, then timing the
iteration of the benchmark over the input. See BatchSize
for
details on choosing the batch size. Use this when the routine must consume its input.
For example, use this loop to benchmark sorting algorithms, because they require unsorted data on each iteration.
§Timing model
elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
§Example
#[macro_use] extern crate criterion;
use criterion::*;
use criterion::async_executor::FuturesExecutor;
fn create_scrambled_data() -> Vec<u64> {
// ...
}
// The sorting algorithm to test
async fn sort(data: &mut [u64]) {
// ...
}
fn bench(c: &mut Criterion) {
let data = create_scrambled_data();
c.bench_function("with_setup", move |b| {
// This will avoid timing the to_vec call.
b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
});
}
criterion_group!(benches, bench);
criterion_main!(benches);
Sourcepub fn iter_batched_ref<I, O, S, R, F>(
&mut self,
setup: S,
routine: R,
size: BatchSize,
)
pub fn iter_batched_ref<I, O, S, R, F>( &mut self, setup: S, routine: R, size: BatchSize, )
Times a routine
that requires some input by generating a batch of input, then timing the
iteration of the benchmark over the input. See BatchSize
for
details on choosing the batch size. Use this when the routine should accept the input by
mutable reference.
For example, use this loop to benchmark sorting algorithms, because they require unsorted data on each iteration.
§Timing model
elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
§Example
#[macro_use] extern crate criterion;
use criterion::*;
use criterion::async_executor::FuturesExecutor;
fn create_scrambled_data() -> Vec<u64> {
// ...
}
// The sorting algorithm to test
async fn sort(data: &mut [u64]) {
// ...
}
fn bench(c: &mut Criterion) {
let data = create_scrambled_data();
c.bench_function("with_setup", move |b| {
// This will avoid timing the to_vec call.
b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
});
}
criterion_group!(benches, bench);
criterion_main!(benches);