1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
use core::{cell::UnsafeCell, mem, sync::atomic::Ordering};
use super::{SeqLock, SeqLockWriteGuard};
use crate::utils::CachePadded;
// Some 64-bit architectures have ABI with 32-bit pointer width (e.g., x86_64 X32 ABI,
// aarch64 ILP32 ABI, mips64 N32 ABI). On those targets, AtomicU64 is fast,
// so use it to reduce chunks of byte-wise atomic memcpy.
#[cfg(any(target_arch = "aarch64", target_arch = "mips64", target_arch = "x86_64"))]
use core::sync::atomic::AtomicU64 as AtomicChunk;
#[cfg(not(any(target_arch = "aarch64", target_arch = "mips64", target_arch = "x86_64")))]
use core::sync::atomic::AtomicUsize as AtomicChunk;
#[cfg(any(target_arch = "aarch64", target_arch = "mips64", target_arch = "x86_64"))]
type Chunk = u64;
#[cfg(not(any(target_arch = "aarch64", target_arch = "mips64", target_arch = "x86_64")))]
type Chunk = usize;
// Adapted from https://github.com/crossbeam-rs/crossbeam/blob/crossbeam-utils-0.8.7/crossbeam-utils/src/atomic/atomic_cell.rs#L969-L1016.
#[inline]
#[must_use]
fn lock(addr: usize) -> &'static SeqLock {
// The number of locks is a prime number because we want to make sure `addr % LEN` gets
// dispersed across all locks.
//
// crossbeam-utils 0.8.7 uses 97 here but does not use CachePadded,
// so the actual concurrency level will be smaller.
const LEN: usize = 67;
#[allow(clippy::declare_interior_mutable_const)]
const L: CachePadded<SeqLock> = CachePadded::new(SeqLock::new());
static LOCKS: [CachePadded<SeqLock>; LEN] = [
L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L,
L, L, L, L, L, L, L,
];
// If the modulus is a constant number, the compiler will use crazy math to transform this into
// a sequence of cheap arithmetic operations rather than using the slow modulo instruction.
&LOCKS[addr % LEN]
}
macro_rules! atomic {
($atomic_type:ident, $int_type:ident, $align:expr) => {
#[repr(C, align($align))]
pub(crate) struct $atomic_type {
v: UnsafeCell<$int_type>,
}
impl $atomic_type {
const LEN: usize = mem::size_of::<$int_type>() / mem::size_of::<Chunk>();
#[inline]
unsafe fn chunks(&self) -> &[AtomicChunk; Self::LEN] {
static_assert!($atomic_type::LEN > 1);
static_assert!(mem::size_of::<$int_type>() % mem::size_of::<Chunk>() == 0);
// SAFETY: the caller must uphold the safety contract for `chunks`.
unsafe { &*(self.v.get() as *const $int_type as *const [AtomicChunk; Self::LEN]) }
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
fn optimistic_read(&self) -> $int_type {
// Using `MaybeUninit<[usize; Self::LEN]>` here doesn't change codegen: https://godbolt.org/z/84ETbhqE3
let mut dst: [Chunk; Self::LEN] = [0; Self::LEN];
for i in 0..Self::LEN {
// SAFETY:
// - There are no threads that perform non-atomic concurrent write operations.
// - There is no writer that updates the value using atomic operations of different granularity.
//
// If the atomic operation is not used here, it will cause a data race
// when `write` performs concurrent write operation.
// Such a data race is sometimes considered virtually unproblematic
// in SeqLock implementations:
//
// - https://github.com/Amanieu/seqlock/issues/2
// - https://github.com/crossbeam-rs/crossbeam/blob/crossbeam-utils-0.8.7/crossbeam-utils/src/atomic/atomic_cell.rs#L1111-L1116
// - https://rust-lang.zulipchat.com/#narrow/stream/136281-t-lang.2Fwg-unsafe-code-guidelines/topic/avoiding.20UB.20due.20to.20races.20by.20discarding.20result.3F
//
// However, in our use case, the implementation that loads/stores value as
// chunks of usize is enough fast and sound, so we use that implementation.
//
// See also atomic-memcpy crate, a generic implementation of this pattern:
// https://github.com/taiki-e/atomic-memcpy
unsafe {
dst[i] = self.chunks()[i].load(Ordering::Relaxed);
}
}
// SAFETY: integers are plain old datatypes so we can always transmute to them.
unsafe { mem::transmute::<[Chunk; Self::LEN], $int_type>(dst) }
}
#[inline]
fn read(&self, _guard: &SeqLockWriteGuard<'static>) -> $int_type {
// SAFETY:
// - The guard guarantees that we hold the lock to write.
// - The raw pointer is valid because we got it from a reference.
//
// Unlike optimistic_read/write, the atomic operation is not required,
// because we hold the lock to write so that other threads cannot
// perform concurrent write operations.
//
// Note: If the atomic load involves an atomic write (e.g.
// 128-bit atomic load on x86_64/aarch64 that uses CAS or LL/SC
// loop), this can still cause a data race.
// However, according to atomic-memcpy's asm test, there seems
// to be no tier 1 or tier 2 platform that generates such code
// for a pointer-width relaxed load + acquire fence:
// https://github.com/taiki-e/atomic-memcpy/tree/v0.1.3/tests/asm-test/asm
unsafe { self.v.get().read() }
}
#[inline]
fn write(&self, val: $int_type, _guard: &SeqLockWriteGuard<'static>) {
// SAFETY: integers are plain old datatypes so we can always transmute them to arrays of integers.
let val = unsafe { mem::transmute::<$int_type, [Chunk; Self::LEN]>(val) };
for i in 0..Self::LEN {
// SAFETY:
// - The guard guarantees that we hold the lock to write.
// - There are no threads that perform non-atomic concurrent read or write operations.
//
// See optimistic_read for the reason that atomic operations are used here.
unsafe {
self.chunks()[i].store(val[i], Ordering::Relaxed);
}
}
}
}
// Send is implicitly implemented.
// SAFETY: any data races are prevented by the lock and atomic operation.
unsafe impl Sync for $atomic_type {}
impl $atomic_type {
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) const fn new(v: $int_type) -> Self {
Self { v: UnsafeCell::new(v) }
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn is_lock_free() -> bool {
Self::is_always_lock_free()
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) const fn is_always_lock_free() -> bool {
false
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn get_mut(&mut self) -> &mut $int_type {
// SAFETY: the mutable reference guarantees unique ownership.
// (UnsafeCell::get_mut requires Rust 1.50)
unsafe { &mut *self.v.get() }
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn into_inner(self) -> $int_type {
self.v.into_inner()
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn load(&self, order: Ordering) -> $int_type {
crate::utils::assert_load_ordering(order);
let lock = lock(self.v.get() as usize);
// Try doing an optimistic read first.
if let Some(stamp) = lock.optimistic_read() {
let val = self.optimistic_read();
if lock.validate_read(stamp) {
return val;
}
}
// Grab a regular write lock so that writers don't starve this load.
let guard = lock.write();
let val = self.read(&guard);
// The value hasn't been changed. Drop the guard without incrementing the stamp.
guard.abort();
val
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn store(&self, val: $int_type, order: Ordering) {
crate::utils::assert_store_ordering(order);
let guard = lock(self.v.get() as usize).write();
self.write(val, &guard)
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn swap(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(val, &guard);
result
}
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn compare_exchange(
&self,
current: $int_type,
new: $int_type,
success: Ordering,
failure: Ordering,
) -> Result<$int_type, $int_type> {
crate::utils::assert_compare_exchange_ordering(success, failure);
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
if result == current {
self.write(new, &guard);
Ok(result)
} else {
// The value hasn't been changed. Drop the guard without incrementing the stamp.
guard.abort();
Err(result)
}
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
#[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)]
pub(crate) fn compare_exchange_weak(
&self,
current: $int_type,
new: $int_type,
success: Ordering,
failure: Ordering,
) -> Result<$int_type, $int_type> {
self.compare_exchange(current, new, success, failure)
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_add(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(result.wrapping_add(val), &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_sub(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(result.wrapping_sub(val), &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_and(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(result & val, &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_nand(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(!(result & val), &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_or(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(result | val, &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_xor(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(result ^ val, &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_max(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(core::cmp::max(result, val), &guard);
result
}
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
#[inline]
pub(crate) fn fetch_min(&self, val: $int_type, _order: Ordering) -> $int_type {
let guard = lock(self.v.get() as usize).write();
let result = self.read(&guard);
self.write(core::cmp::min(result, val), &guard);
result
}
}
};
}
#[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))]
#[cfg_attr(portable_atomic_no_cfg_target_has_atomic, cfg(any(test, portable_atomic_no_atomic_64)))]
#[cfg_attr(
not(portable_atomic_no_cfg_target_has_atomic),
cfg(any(test, not(target_has_atomic = "64")))
)]
atomic!(AtomicI64, i64, 8);
#[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))]
#[cfg_attr(portable_atomic_no_cfg_target_has_atomic, cfg(any(test, portable_atomic_no_atomic_64)))]
#[cfg_attr(
not(portable_atomic_no_cfg_target_has_atomic),
cfg(any(test, not(target_has_atomic = "64")))
)]
atomic!(AtomicU64, u64, 8);
#[cfg(any(test, not(portable_atomic_cmpxchg16b_dynamic)))]
atomic!(AtomicI128, i128, 16);
atomic!(AtomicU128, u128, 16);
#[cfg(test)]
mod tests {
use super::*;
#[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))]
test_atomic_int!(i64);
#[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))]
test_atomic_int!(u64);
test_atomic_int!(i128);
test_atomic_int!(u128);
}