plotters/element/
pie.rs

1use crate::{
2    element::{Drawable, PointCollection},
3    style::{IntoFont, RGBColor, TextStyle, BLACK},
4};
5use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
6use std::{error::Error, f64::consts::PI, fmt::Display};
7
8#[derive(Debug)]
9enum PieError {
10    LengthMismatch,
11}
12impl Display for PieError {
13    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
14        match self {
15            &PieError::LengthMismatch => write!(f, "Length Mismatch"),
16        }
17    }
18}
19
20impl Error for PieError {}
21
22/// A Pie Graph
23pub struct Pie<'a, Coord, Label: Display> {
24    center: &'a Coord, // cartesian coord
25    radius: &'a f64,
26    sizes: &'a [f64],
27    colors: &'a [RGBColor],
28    labels: &'a [Label],
29    total: f64,
30    start_radian: f64,
31    label_style: TextStyle<'a>,
32    label_offset: f64,
33    percentage_style: Option<TextStyle<'a>>,
34    donut_hole: f64, // radius of the hole in case of a donut chart
35}
36
37impl<'a, Label: Display> Pie<'a, (i32, i32), Label> {
38    /// Build a Pie object.
39    /// Assumes a start angle at 0.0, which is aligned to the horizontal axis.
40    pub fn new(
41        center: &'a (i32, i32),
42        radius: &'a f64,
43        sizes: &'a [f64],
44        colors: &'a [RGBColor],
45        labels: &'a [Label],
46    ) -> Self {
47        // fold iterator to pre-calculate total from given slice sizes
48        let total = sizes.iter().sum();
49
50        // default label style and offset as 5% of the radius
51        let radius_5pct = radius * 0.05;
52
53        // strong assumption that the background is white for legibility.
54        let label_style = TextStyle::from(("sans-serif", radius_5pct).into_font()).color(&BLACK);
55        Self {
56            center,
57            radius,
58            sizes,
59            colors,
60            labels,
61            total,
62            start_radian: 0.0,
63            label_style,
64            label_offset: radius_5pct,
65            percentage_style: None,
66            donut_hole: 0.0,
67        }
68    }
69
70    /// Pass an angle in degrees to change the default.
71    /// Default is set to start at 0, which is aligned on the x axis.
72    /// ```
73    /// use plotters::prelude::*;
74    /// let mut pie = Pie::new(&(50,50), &10.0, &[50.0, 25.25, 20.0, 5.5], &[RED, BLUE, GREEN, WHITE], &["Red", "Blue", "Green", "White"]);
75    /// pie.start_angle(-90.0);  // retract to a right angle, so it starts aligned to a vertical Y axis.
76    /// ```
77    pub fn start_angle(&mut self, start_angle: f64) {
78        // angle is more intuitive in degrees as an API, but we use it as radian offset internally.
79        self.start_radian = start_angle.to_radians();
80    }
81
82    /// Set the label style.
83    pub fn label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
84        self.label_style = label_style.into();
85    }
86
87    /// Sets the offset to labels, to distanciate them further/closer from the center.
88    pub fn label_offset(&mut self, offset_to_radius: f64) {
89        self.label_offset = offset_to_radius
90    }
91
92    /// enables drawing the wedge's percentage in the middle of the wedge, with the given style
93    pub fn percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
94        self.percentage_style = Some(label_style.into());
95    }
96
97    /// Enables creating a donut chart with a hole of the specified radius.
98    ///
99    /// The passed value must be greater than zero and lower than the chart overall radius, otherwise it'll be ignored.
100    pub fn donut_hole(&mut self, hole_radius: f64) {
101        if hole_radius > 0.0 && hole_radius < *self.radius {
102            self.donut_hole = hole_radius;
103        }
104    }
105}
106
107impl<'a, DB: DrawingBackend, Label: Display> Drawable<DB> for Pie<'a, (i32, i32), Label> {
108    fn draw<I: Iterator<Item = BackendCoord>>(
109        &self,
110        _pos: I,
111        backend: &mut DB,
112        _parent_dim: (u32, u32),
113    ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
114        let mut offset_theta = self.start_radian;
115
116        // const reused for every radian calculation
117        // the bigger the radius, the more fine-grained it should calculate
118        // to avoid being aliasing from being too noticeable.
119        // this all could be avoided if backend could draw a curve/bezier line as part of a polygon.
120        let radian_increment = PI / 180.0 / self.radius.sqrt() * 2.0;
121        let mut perc_labels = Vec::new();
122        for (index, slice) in self.sizes.iter().enumerate() {
123            let slice_style = self
124                .colors
125                .get(index)
126                .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
127            let label = self
128                .labels
129                .get(index)
130                .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
131            // start building wedge line against the previous edge
132            let mut points = if self.donut_hole == 0.0 {
133                vec![*self.center]
134            } else {
135                vec![]
136            };
137            let ratio = slice / self.total;
138            let theta_final = ratio * 2.0 * PI + offset_theta; // end radian for the wedge
139
140            // calculate middle for labels before mutating offset
141            let middle_theta = ratio * PI + offset_theta;
142
143            let slice_start = offset_theta;
144
145            // calculate every fraction of radian for the wedge, offsetting for every iteration, clockwise
146            //
147            // a custom Range such as `for theta in offset_theta..=theta_final` would be more elegant
148            // but f64 doesn't implement the Range trait, and it would requires the Step trait (increment by 1.0 or 0.0001?)
149            // which is unstable therefore cannot be implemented outside of std, even as a newtype for radians.
150            while offset_theta <= theta_final {
151                let coord = theta_to_ordinal_coord(*self.radius, offset_theta, self.center);
152                points.push(coord);
153                offset_theta += radian_increment;
154            }
155            // final point of the wedge may not fall exactly on a radian, so add it extra
156            let final_coord = theta_to_ordinal_coord(*self.radius, theta_final, self.center);
157            points.push(final_coord);
158
159            if self.donut_hole > 0.0 {
160                while offset_theta >= slice_start {
161                    let coord = theta_to_ordinal_coord(self.donut_hole, offset_theta, self.center);
162                    points.push(coord);
163                    offset_theta -= radian_increment;
164                }
165                // final point of the wedge may not fall exactly on a radian, so add it extra
166                let final_coord_inner =
167                    theta_to_ordinal_coord(self.donut_hole, slice_start, self.center);
168                points.push(final_coord_inner);
169            }
170
171            // next wedge calculation will start from previous wedges's last radian
172            offset_theta = theta_final;
173
174            // draw wedge
175            // TODO: Currently the backend doesn't have API to draw an arc. We need add that in the
176            // future
177            backend.fill_polygon(points, slice_style)?;
178
179            // label coords from the middle
180            let mut mid_coord =
181                theta_to_ordinal_coord(self.radius + self.label_offset, middle_theta, self.center);
182
183            // ensure label's doesn't fall in the circle
184            let label_size = backend.estimate_text_size(&label.to_string(), &self.label_style)?;
185            // if on the left hand side of the pie, offset whole label to the left
186            if mid_coord.0 <= self.center.0 {
187                mid_coord.0 -= label_size.0 as i32;
188            }
189            // put label
190            backend.draw_text(&label.to_string(), &self.label_style, mid_coord)?;
191            if let Some(percentage_style) = &self.percentage_style {
192                let perc_label = format!("{:.1}%", (ratio * 100.0));
193                let label_size = backend.estimate_text_size(&perc_label, percentage_style)?;
194                let text_x_mid = (label_size.0 as f64 / 2.0).round() as i32;
195                let text_y_mid = (label_size.1 as f64 / 2.0).round() as i32;
196                let perc_radius = (self.radius + self.donut_hole) / 2.0;
197                let perc_coord = theta_to_ordinal_coord(
198                    perc_radius,
199                    middle_theta,
200                    &(self.center.0 - text_x_mid, self.center.1 - text_y_mid),
201                );
202                // perc_coord.0 -= middle_label_size.0.round() as i32;
203                perc_labels.push((perc_label, perc_coord));
204            }
205        }
206        // while percentages are generated during the first main iterations,
207        // they have to go on top of the already drawn wedges, so require a new iteration.
208        for (label, coord) in perc_labels {
209            let style = self.percentage_style.as_ref().unwrap();
210            backend.draw_text(&label, style, coord)?;
211        }
212        Ok(())
213    }
214}
215
216impl<'a, Label: Display> PointCollection<'a, (i32, i32)> for &'a Pie<'a, (i32, i32), Label> {
217    type Point = &'a (i32, i32);
218    type IntoIter = std::iter::Once<&'a (i32, i32)>;
219    fn point_iter(self) -> std::iter::Once<&'a (i32, i32)> {
220        std::iter::once(self.center)
221    }
222}
223
224fn theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32) {
225    // polar coordinates are (r, theta)
226    // convert to (x, y) coord, with center as offset
227
228    let (sin, cos) = theta.sin_cos();
229    (
230        // casting f64 to discrete i32 pixels coordinates is inevitably going to lose precision
231        // if plotters can support float coordinates, this place would surely benefit, especially for small sizes.
232        // so far, the result isn't so bad though
233        (radius * cos + ordinal_offset.0 as f64).round() as i32, // x
234        (radius * sin + ordinal_offset.1 as f64).round() as i32, // y
235    )
236}
237#[cfg(test)]
238mod test {
239    use super::*;
240    // use crate::prelude::*;
241
242    #[test]
243    fn polar_coord_to_cartestian_coord() {
244        let coord = theta_to_ordinal_coord(800.0, 1.5_f64.to_radians(), &(5, 5));
245        // rounded tends to be more accurate. this gets truncated to (804, 25) without rounding.
246        assert_eq!(coord, (805, 26)); //coord calculated from theta
247    }
248    #[test]
249    fn pie_calculations() {
250        let mut center = (5, 5);
251        let mut radius = 800.0;
252
253        let sizes = vec![50.0, 25.0];
254        // length isn't validated in new()
255        let colors = vec![];
256        let labels: Vec<&str> = vec![];
257        let pie = Pie::new(&center, &radius, &sizes, &colors, &labels);
258        assert_eq!(pie.total, 75.0); // total calculated from sizes
259
260        // not ownership greedy
261        center.1 += 1;
262        radius += 1.0;
263        assert!(colors.get(0).is_none());
264        assert!(labels.first().is_none());
265        assert_eq!(radius, 801.0);
266    }
267}