1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use std::collections::VecDeque;

use crate::{
    encoding::hybrid_rle::{self, HybridRleDecoder},
    error::Error,
    indexes::Interval,
    page::{split_buffer, DataPage},
    read::levels::get_bit_width,
};

use super::hybrid_rle::{HybridDecoderBitmapIter, HybridRleIter};

pub(super) fn dict_indices_decoder(page: &DataPage) -> Result<hybrid_rle::HybridRleDecoder, Error> {
    let (_, _, indices_buffer) = split_buffer(page)?;

    // SPEC: Data page format: the bit width used to encode the entry ids stored as 1 byte (max bit width = 32),
    // SPEC: followed by the values encoded using RLE/Bit packed described above (with the given bit width).
    let bit_width = indices_buffer[0];
    if bit_width > 32 {
        return Err(Error::oos(
            "Bit width of dictionary pages cannot be larger than 32",
        ));
    }
    let indices_buffer = &indices_buffer[1..];

    hybrid_rle::HybridRleDecoder::try_new(indices_buffer, bit_width as u32, page.num_values())
}

/// Decoder of definition levels.
#[derive(Debug)]
pub enum DefLevelsDecoder<'a> {
    /// When the maximum definition level is 1, the definition levels are RLE-encoded and
    /// the bitpacked runs are bitmaps. This variant contains [`HybridDecoderBitmapIter`]
    /// that decodes the runs, but not the individual values
    Bitmap(HybridDecoderBitmapIter<'a>),
    /// When the maximum definition level is larger than 1
    Levels(HybridRleDecoder<'a>, u32),
}

impl<'a> DefLevelsDecoder<'a> {
    pub fn try_new(page: &'a DataPage) -> Result<Self, Error> {
        let (_, def_levels, _) = split_buffer(page)?;

        let max_def_level = page.descriptor.max_def_level;
        Ok(if max_def_level == 1 {
            let iter = hybrid_rle::Decoder::new(def_levels, 1);
            let iter = HybridRleIter::new(iter, page.num_values());
            Self::Bitmap(iter)
        } else {
            let iter = HybridRleDecoder::try_new(
                def_levels,
                get_bit_width(max_def_level),
                page.num_values(),
            )?;
            Self::Levels(iter, max_def_level as u32)
        })
    }
}

/// Iterator adapter to convert an iterator of non-null values and an iterator over validity
/// into an iterator of optional values.
#[derive(Debug, Clone)]
pub struct OptionalValues<T, V: Iterator<Item = Result<bool, Error>>, I: Iterator<Item = T>> {
    validity: V,
    values: I,
}

impl<T, V: Iterator<Item = Result<bool, Error>>, I: Iterator<Item = T>> OptionalValues<T, V, I> {
    pub fn new(validity: V, values: I) -> Self {
        Self { validity, values }
    }
}

impl<T, V: Iterator<Item = Result<bool, Error>>, I: Iterator<Item = T>> Iterator
    for OptionalValues<T, V, I>
{
    type Item = Result<Option<T>, Error>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.validity
            .next()
            .map(|x| x.map(|x| if x { self.values.next() } else { None }))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.validity.size_hint()
    }
}

/// An iterator adapter that converts an iterator over items into an iterator over slices of
/// those N items.
///
/// This iterator is best used with iterators that implement `nth` since skipping items
/// allows this iterator to skip sequences of items without having to call each of them.
#[derive(Debug, Clone)]
pub struct SliceFilteredIter<I> {
    iter: I,
    selected_rows: VecDeque<Interval>,
    current_remaining: usize,
    current: usize, // position in the slice
    total_length: usize,
}

impl<I> SliceFilteredIter<I> {
    /// Return a new [`SliceFilteredIter`]
    pub fn new(iter: I, selected_rows: VecDeque<Interval>) -> Self {
        let total_length = selected_rows.iter().map(|i| i.length).sum();
        Self {
            iter,
            selected_rows,
            current_remaining: 0,
            current: 0,
            total_length,
        }
    }
}

impl<T, I: Iterator<Item = T>> Iterator for SliceFilteredIter<I> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.current_remaining == 0 {
            if let Some(interval) = self.selected_rows.pop_front() {
                // skip the hole between the previous start and this start
                // (start + length) - start
                let item = self.iter.nth(interval.start - self.current);
                self.current = interval.start + interval.length;
                self.current_remaining = interval.length - 1;
                self.total_length -= 1;
                item
            } else {
                None
            }
        } else {
            self.current_remaining -= 1;
            self.total_length -= 1;
            self.iter.next()
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.total_length, Some(self.total_length))
    }
}

#[cfg(test)]
mod test {
    use std::collections::VecDeque;

    use super::*;

    #[test]
    fn basic() {
        let iter = 0..=100;

        let intervals = vec![
            Interval::new(0, 2),
            Interval::new(20, 11),
            Interval::new(31, 1),
        ];

        let a: VecDeque<Interval> = intervals.clone().into_iter().collect();
        let mut a = SliceFilteredIter::new(iter, a);

        let expected: Vec<usize> = intervals
            .into_iter()
            .flat_map(|interval| interval.start..(interval.start + interval.length))
            .collect();

        assert_eq!(expected, a.by_ref().collect::<Vec<_>>());
        assert_eq!((0, Some(0)), a.size_hint());
    }
}