1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! A cache of the txn shard contents.
use std::cmp::{max, min};
use std::collections::{BTreeMap, VecDeque};
use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
use differential_dataflow::hashable::Hashable;
use differential_dataflow::lattice::Lattice;
use itertools::Itertools;
use mz_ore::cast::CastFrom;
use mz_ore::collections::HashMap;
use mz_ore::instrument;
use mz_persist_client::cfg::USE_CRITICAL_SINCE_TXN;
use mz_persist_client::fetch::LeasedBatchPart;
use mz_persist_client::metrics::encode_ts_metric;
use mz_persist_client::read::{ListenEvent, ReadHandle, Subscribe};
use mz_persist_client::write::WriteHandle;
use mz_persist_client::{Diagnostics, PersistClient, ShardId};
use mz_persist_types::txn::{TxnsCodec, TxnsEntry};
use mz_persist_types::{Codec64, StepForward};
use timely::order::TotalOrder;
use timely::progress::{Antichain, Timestamp};
use tracing::debug;
use crate::metrics::Metrics;
use crate::txn_read::{DataListenNext, DataRemapEntry, DataSnapshot, DataSubscribe};
use crate::TxnsCodecDefault;
/// A cache of the txn shard contents, optimized for various in-memory
/// operations.
///
/// # Implementation Details
///
/// Reads of data shards are almost as straightforward as writes. A data shard
/// may be read normally, using snapshots, subscriptions, shard_source, etc,
/// through the most recent non-empty write. However, the upper of the txns
/// shard (and thus the logical upper of the data shard) may be arbitrarily far
/// ahead of the physical upper of the data shard. As a result, we do the
/// following:
///
/// - To take a snapshot of a data shard, the `as_of` is passed through
/// unchanged if the timestamp of that shard's latest non-empty write is past
/// it. Otherwise, we know the times between them have no writes and can fill
/// them with empty updates. Concretely, to read a snapshot as of `T`:
/// - We read the txns shard contents up through and including `T`, blocking
/// until the upper passes `T` if necessary.
/// - We then find, for the requested data shard, the latest non-empty write
/// at a timestamp `T' <= T`.
/// - We wait for `T'` to be applied by watching the data shard upper.
/// - We `compare_and_append` empty updates for `(T', T]`, which is known by
/// the txn system to not have writes for this shard (otherwise we'd have
/// picked a different `T'`).
/// - We read the snapshot at `T` as normal.
/// - To iterate a listen on a data shard, when writes haven't been read yet
/// they are passed through unchanged, otherwise if the txns shard indicates
/// that there are ranges of empty time progress is returned, otherwise
/// progress to the txns shard will indicate when new information is
/// available.
///
/// Note that all of the above can be determined solely by information in the
/// txns shard. In particular, non-empty writes are indicated by updates with
/// positive diffs.
///
/// Also note that the above is structured such that it is possible to write a
/// timely operator with the data shard as an input, passing on all payloads
/// unchanged and simply manipulating capabilities in response to data and txns
/// shard progress. See [crate::operator::txns_progress].
#[derive(Debug)]
pub struct TxnsCacheState<T: Timestamp + Lattice + Codec64> {
txns_id: ShardId,
/// The since of the txn_shard when this cache was initialized.
/// Some writes with a timestamp < than this may have been applied and
/// tidied, so this cache has no way of learning about them.
///
/// Invariant: never changes.
pub(crate) init_ts: T,
/// The contents of this cache are updated up to, but not including, this time.
pub(crate) progress_exclusive: T,
next_batch_id: usize,
/// The batches needing application as of the current progress.
///
/// This is indexed by a "batch id" that is internal to this object because
/// timestamps are not unique.
///
/// Invariant: Values are sorted by timestamp.
pub(crate) unapplied_batches: BTreeMap<usize, (ShardId, Vec<u8>, T)>,
/// An index into `unapplied_batches` keyed by the serialized batch.
batch_idx: HashMap<Vec<u8>, usize>,
/// The times at which each data shard has been written.
///
/// Invariant: Contains all unapplied writes and registers.
/// Invariant: Contains the latest write and registertaion >= init_ts for all shards.
pub(crate) datas: BTreeMap<ShardId, DataTimes<T>>,
/// The registers and forgets needing application as of the current progress.
///
/// Invariant: Values are sorted by timestamp.
pub(crate) unapplied_registers: VecDeque<(ShardId, T)>,
/// If Some, this cache only tracks the indicated data shard as a
/// performance optimization. When used, only some methods (in particular,
/// the ones necessary for the txns_progress operator) are supported.
///
/// TODO: It'd be nice to make this a compile time thing. I have some ideas,
/// but they're decently invasive, so leave it for a followup.
only_data_id: Option<ShardId>,
}
/// A self-updating [TxnsCacheState].
#[derive(Debug)]
pub struct TxnsCache<T: Timestamp + Lattice + Codec64, C: TxnsCodec = TxnsCodecDefault> {
/// A subscribe over the txn shard.
pub(crate) txns_subscribe: Subscribe<C::Key, C::Val, T, i64>,
/// Pending updates for timestamps that haven't closed.
pub(crate) buf: Vec<(TxnsEntry, T, i64)>,
state: TxnsCacheState<T>,
}
impl<T: Timestamp + Lattice + TotalOrder + StepForward + Codec64> TxnsCacheState<T> {
/// Creates a new empty [`TxnsCacheState`].
///
/// `init_ts` must be == the critical handle's since of the txn shard.
fn new(txns_id: ShardId, init_ts: T, only_data_id: Option<ShardId>) -> Self {
TxnsCacheState {
txns_id,
init_ts,
progress_exclusive: T::minimum(),
next_batch_id: 0,
unapplied_batches: BTreeMap::new(),
batch_idx: HashMap::new(),
datas: BTreeMap::new(),
unapplied_registers: VecDeque::new(),
only_data_id,
}
}
/// Creates and initializes a new [`TxnsCacheState`].
///
/// `txns_read` is a [`ReadHandle`] on the txn shard.
pub(crate) async fn init<C: TxnsCodec>(
only_data_id: Option<ShardId>,
txns_read: ReadHandle<C::Key, C::Val, T, i64>,
) -> (Self, Subscribe<C::Key, C::Val, T, i64>) {
let txns_id = txns_read.shard_id();
let as_of = txns_read.since().clone();
let since_ts = as_of.as_option().expect("txns shard is not closed").clone();
let mut txns_subscribe = txns_read
.subscribe(as_of)
.await
.expect("handle holds a capability");
let mut state = Self::new(txns_id, since_ts.clone(), only_data_id.clone());
let mut buf = Vec::new();
// The cache must be updated to `since_ts` to maintain the invariant
// that `state.since_ts <= state.progress_exclusive`.
TxnsCache::<T, C>::update(
&mut state,
&mut txns_subscribe,
&mut buf,
only_data_id,
|progress_exclusive| progress_exclusive >= &since_ts,
)
.await;
debug_assert_eq!(state.validate(), Ok(()));
(state, txns_subscribe)
}
/// Returns the [ShardId] of the txns shard.
pub fn txns_id(&self) -> ShardId {
self.txns_id
}
/// Returns whether the data shard was registered to the txns set as of the
/// current progress.
///
/// Specifically, a data shard is registered if the most recent register
/// timestamp is set but the most recent forget timestamp is not set.
///
/// This function accepts a timestamp as input, but that timestamp must be
/// equal to the progress exclusive, or else the function panics. It mainly
/// acts as a way for the caller to think about the logical time at which
/// this function executes. Times in the past may have been compacted away,
/// and we can't always return an accurate answer. If this function isn't
/// sufficient, you can usually find what you're looking for by inspecting
/// the times in the most recent registration.
pub fn registered_at_progress(&self, data_id: &ShardId, ts: &T) -> bool {
self.assert_only_data_id(data_id);
assert_eq!(self.progress_exclusive, *ts);
let Some(data_times) = self.datas.get(data_id) else {
return false;
};
data_times.last_reg().forget_ts.is_none()
}
/// Returns the set of all data shards registered to the txns set as of the
/// current progress. See [Self::registered_at_progress].
pub(crate) fn all_registered_at_progress(&self, ts: &T) -> Vec<ShardId> {
assert_eq!(self.only_data_id, None);
assert_eq!(self.progress_exclusive, *ts);
self.datas
.iter()
.filter(|(_, data_times)| data_times.last_reg().forget_ts.is_none())
.map(|(data_id, _)| *data_id)
.collect()
}
/// Returns a token exchangeable for a snapshot of a data shard.
///
/// A data shard might be definite at times past the physical upper because
/// of invariants maintained by this txn system. As a result, this method
/// discovers the latest potentially unapplied write before the `as_of`.
///
/// Callers must first wait for [`TxnsCache::update_gt`] with the same or
/// later timestamp to return. Panics otherwise.
pub fn data_snapshot(&self, data_id: ShardId, as_of: T) -> DataSnapshot<T> {
self.assert_only_data_id(&data_id);
assert!(self.progress_exclusive > as_of);
// `empty_to` will often be used as the input to `data_listen_next`.
// `data_listen_next` needs a timestamp that is greater than or equal
// to the init_ts. See the comment above the assert in
// `data_listen_next` for more details.
//
// TODO: Once the txn shard itself always tracks the most recent write
// for every shard, we can remove this and always use
// `as_of.step_forward()`.
let empty_to = max(as_of.step_forward(), self.init_ts.clone());
let Some(all) = self.datas.get(&data_id) else {
// Not registered currently, so we know there are no unapplied
// writes.
return DataSnapshot {
data_id,
latest_write: None,
as_of,
empty_to,
};
};
let min_unapplied_ts = self
.unapplied_batches
.first_key_value()
.map(|(_, (_, _, ts))| ts)
.unwrap_or(&self.progress_exclusive);
let latest_write = all
.writes
.iter()
.rev()
.find(|x| **x <= as_of && *x >= min_unapplied_ts)
.cloned();
debug!(
"data_snapshot {:.9} latest_write={:?} as_of={:?} empty_to={:?}: all={:?}",
data_id.to_string(),
latest_write,
as_of,
empty_to,
all,
);
let ret = DataSnapshot {
data_id: data_id.clone(),
latest_write,
as_of,
empty_to,
};
assert_eq!(ret.validate(), Ok(()));
ret
}
// TODO(jkosh44) This method can likely be simplified to return
// DataRemapEntry directly.
/// Returns the next action to take when iterating a Listen on a data shard.
///
/// A data shard Listen is executed by repeatedly calling this method with
/// an exclusive progress frontier. The returned value indicates an action
/// to take. Some of these actions advance the progress frontier, which
/// results in calling this method again with a higher timestamp, and thus a
/// new action. See [DataListenNext] for specifications of the actions.
///
/// Note that this is a state machine on `self.progress_exclusive` and the
/// listen progress. DataListenNext indicates which state transitions to
/// take.
pub fn data_listen_next(&self, data_id: &ShardId, ts: &T) -> DataListenNext<T> {
self.assert_only_data_id(data_id);
assert!(
&self.progress_exclusive >= ts,
"ts {:?} is past progress_exclusive {:?}",
ts,
self.progress_exclusive
);
// There may be applied and tidied writes before the init_ts that the
// cache is unaware of. So if this method is called with a timestamp
// less than the initial since, it may mistakenly tell the caller to
// `EmitLogicalProgress(self.progress_exclusive)` instead of the
// correct answer of `ReadTo(tidied_write_ts)`.
//
// We know for a fact that there are no unapplied writes, registers, or
// forgets before the init_ts because the since of the txn shard is
// always held back to the earliest unapplied event. There may be some
// untidied events with a lower timestamp than the init_ts, but they
// are guaranteed to be applied.
//
// TODO: Once the txn shard itself always tracks the most recent write
// for every shard, we can remove this assert. It will always be
// correct to return ReadTo(latest_write_ts) if there are any writes,
// and then `EmitLogicalProgress(self.progress_exclusive)`.
assert!(
ts >= &self.init_ts,
"ts {:?} is not past initial since {:?}",
ts,
self.init_ts
);
use DataListenNext::*;
let data_times = self.datas.get(data_id);
debug!(
"data_listen_next {:.9} {:?}: progress={:?} times={:?}",
data_id.to_string(),
ts,
self.progress_exclusive,
data_times,
);
let Some(data_times) = data_times else {
// Not registered, maybe it will be in the future? In the meantime,
// treat it like a normal shard (i.e. pass through reads) and check
// again later.
if ts < &self.progress_exclusive {
return ReadDataTo(self.progress_exclusive.clone());
} else {
return WaitForTxnsProgress;
}
};
let physical_ts = data_times.latest_physical_ts();
let last_reg = data_times.last_reg();
if ts >= &self.progress_exclusive {
// All caught up, we have to wait.
WaitForTxnsProgress
} else if ts <= physical_ts {
// There was some physical write, so read up to that time.
ReadDataTo(physical_ts.step_forward())
} else if last_reg.forget_ts.is_none() {
// Emitting logical progress at the wrong time is a correctness bug,
// so be extra defensive about the necessary conditions: the most
// recent registration is still active, and we're in it.
assert!(last_reg.contains(ts));
EmitLogicalProgress(self.progress_exclusive.clone())
} else {
// The most recent forget is set, which means it's not registered as of
// the latest information we have. Read to the current progress point
// normally.
assert!(ts > &last_reg.register_ts && last_reg.forget_ts.is_some());
ReadDataTo(self.progress_exclusive.clone())
}
}
/// Returns a token exchangeable for a subscribe of a data shard.
///
/// Callers must first wait for [`TxnsCache::update_gt`] with the same or
/// later timestamp to return. Panics otherwise.
pub(crate) fn data_subscribe(&self, data_id: ShardId, as_of: T) -> DataSubscribe<T> {
self.assert_only_data_id(&data_id);
assert!(self.progress_exclusive > as_of);
let snapshot = self.data_snapshot(data_id, as_of);
let remap = DataRemapEntry {
physical_upper: snapshot.empty_to.clone(),
logical_upper: snapshot.empty_to.clone(),
};
DataSubscribe {
data_id,
snapshot: Some(snapshot),
remap,
}
}
/// Returns the minimum timestamp not known to be applied by this cache.
pub fn min_unapplied_ts(&self) -> &T {
assert_eq!(self.only_data_id, None);
self.min_unapplied_ts_inner()
}
fn min_unapplied_ts_inner(&self) -> &T {
// We maintain an invariant that the values in the unapplied_batches map
// are sorted by timestamp, thus the first one must be the minimum.
let min_batch_ts = self
.unapplied_batches
.first_key_value()
.map(|(_, (_, _, ts))| ts)
// If we don't have any known unapplied batches, then the next
// timestamp that could be written must potentially have an
// unapplied batch.
.unwrap_or(&self.progress_exclusive);
let min_register_ts = self
.unapplied_registers
.front()
.map(|(_, ts)| ts)
.unwrap_or(&self.progress_exclusive);
min(min_batch_ts, min_register_ts)
}
/// Returns the operations needing application as of the current progress.
pub(crate) fn unapplied(&self) -> impl Iterator<Item = (&ShardId, Unapplied, &T)> {
assert_eq!(self.only_data_id, None);
let registers = self
.unapplied_registers
.iter()
.map(|(data_id, ts)| (data_id, Unapplied::RegisterForget, ts));
let batches = self
.unapplied_batches
.values()
.fold(
BTreeMap::new(),
|mut accum: BTreeMap<_, Vec<_>>, (data_id, batch, ts)| {
accum.entry((ts, data_id)).or_default().push(batch);
accum
},
)
.into_iter()
.map(|((ts, data_id), batches)| (data_id, Unapplied::Batch(batches), ts));
// This will emit registers and forgets before batches at the same timestamp. Currently,
// this is fine because for a single data shard you can't combine registers, forgets, and
// batches at the same timestamp. In the future if we allow combining these operations in
// a single op, then we probably want to emit registers, then batches, then forgets or we
// can make forget exclusive in which case we'd emit it before batches.
registers.merge_by(batches, |(_, _, ts1), (_, _, ts2)| ts1 <= ts2)
}
/// Filters out retractions known to have made it into the txns shard.
///
/// This is called with a set of things that are known to have been applied
/// and in preparation for retracting them. The caller will attempt to
/// retract everything not filtered out by this method in a CaA with an
/// expected upper of `expected_txns_upper`. So, we catch up to that point,
/// and keep everything that is still outstanding. If the CaA fails with an
/// expected upper mismatch, then it must call this method again on the next
/// attempt with the new expected upper (new retractions may have made it
/// into the txns shard in the meantime).
///
/// Callers must first wait for [`TxnsCache::update_ge`] with the same or
/// later timestamp to return. Panics otherwise.
pub(crate) fn filter_retractions<'a>(
&'a self,
expected_txns_upper: &T,
retractions: impl Iterator<Item = (&'a Vec<u8>, &'a ([u8; 8], ShardId))>,
) -> impl Iterator<Item = (&'a Vec<u8>, &'a ([u8; 8], ShardId))> {
assert_eq!(self.only_data_id, None);
assert!(&self.progress_exclusive >= expected_txns_upper);
retractions.filter(|(batch_raw, _)| self.batch_idx.contains_key(*batch_raw))
}
/// Update contents with `entries` and mark this cache as progressed up to `progress`.
pub(crate) fn push_entries(&mut self, mut entries: Vec<(TxnsEntry, T, i64)>, progress: T) {
// Persist emits the times sorted by little endian encoding,
// which is not what we want. If we ever expose an interface for
// registering and committing to a data shard at the same
// timestamp, this will also have to sort registrations first.
entries.sort_by(|(a, _, _), (b, _, _)| a.ts::<T>().cmp(&b.ts::<T>()));
for (e, t, d) in entries {
match e {
TxnsEntry::Register(data_id, ts) => {
let ts = T::decode(ts);
debug_assert!(ts <= t);
self.push_register(data_id, ts, d, t);
}
TxnsEntry::Append(data_id, ts, batch) => {
let ts = T::decode(ts);
debug_assert!(ts <= t);
self.push_append(data_id, batch, ts, d)
}
}
}
self.progress_exclusive = progress;
debug_assert_eq!(self.validate(), Ok(()));
}
fn push_register(&mut self, data_id: ShardId, ts: T, diff: i64, compacted_ts: T) {
self.assert_only_data_id(&data_id);
// Since we keep the original non-advanced timestamp around, retractions
// necessarily might be for times in the past, so `|| diff < 0`.
debug_assert!(ts >= self.progress_exclusive || diff < 0);
if let Some(only_data_id) = self.only_data_id.as_ref() {
if only_data_id != &data_id {
return;
}
}
// The shard has not compacted past the register/forget ts, so it may not have been applied.
if ts == compacted_ts {
self.unapplied_registers.push_back((data_id, ts.clone()));
}
if diff == 1 {
debug!(
"cache learned {:.9} registered t={:?}",
data_id.to_string(),
ts
);
let entry = self.datas.entry(data_id).or_default();
// Sanity check that if there is a registration, then we've closed
// it off.
if let Some(last_reg) = entry.registered.back() {
assert!(last_reg.forget_ts.is_some())
}
entry.registered.push_back(DataRegistered {
register_ts: ts,
forget_ts: None,
});
} else if diff == -1 {
debug!(
"cache learned {:.9} forgotten t={:?}",
data_id.to_string(),
ts
);
let active_reg = self
.datas
.get_mut(&data_id)
.and_then(|x| x.registered.back_mut())
.expect("data shard should be registered before forget");
assert_eq!(active_reg.forget_ts.replace(ts), None);
} else {
unreachable!("only +1/-1 diffs are used");
}
debug_assert_eq!(self.validate(), Ok(()));
}
fn push_append(&mut self, data_id: ShardId, batch: Vec<u8>, ts: T, diff: i64) {
self.assert_only_data_id(&data_id);
// Since we keep the original non-advanced timestamp around, retractions
// necessarily might be for times in the past, so `|| diff < 0`.
debug_assert!(ts >= self.progress_exclusive || diff < 0);
if let Some(only_data_id) = self.only_data_id.as_ref() {
if only_data_id != &data_id {
return;
}
}
if diff == 1 {
debug!(
"cache learned {:.9} committed t={:?} b={}",
data_id.to_string(),
ts,
batch.hashed(),
);
let idx = self.next_batch_id;
self.next_batch_id += 1;
let prev = self.batch_idx.insert(batch.clone(), idx);
assert_eq!(prev, None);
let prev = self
.unapplied_batches
.insert(idx, (data_id, batch, ts.clone()));
assert_eq!(prev, None);
let times = self.datas.get_mut(&data_id).expect("data is initialized");
// Sanity check that shard is registered.
assert_eq!(times.last_reg().forget_ts, None);
times.writes.push_back(ts);
} else if diff == -1 {
debug!(
"cache learned {:.9} applied t={:?} b={}",
data_id.to_string(),
ts,
batch.hashed(),
);
let idx = self
.batch_idx
.remove(&batch)
.expect("invariant violation: batch should exist");
let prev = self
.unapplied_batches
.remove(&idx)
.expect("invariant violation: batch index should exist");
debug_assert_eq!(data_id, prev.0);
debug_assert_eq!(batch, prev.1);
// Insertion timestamp should be less equal retraction timestamp.
debug_assert!(prev.2 <= ts);
} else {
unreachable!("only +1/-1 diffs are used");
}
self.compact_data_times(&data_id);
debug_assert_eq!(self.validate(), Ok(()));
}
/// Informs the cache that all registers and forgets less than ts have been
/// applied.
pub(crate) fn mark_register_applied(&mut self, ts: &T) {
self.unapplied_registers
.retain(|(_, register_ts)| ts < register_ts);
debug_assert_eq!(self.validate(), Ok(()));
}
/// Compact the internal representation for `data_id` by removing all data
/// that is not needed to maintain the following invariants:
///
/// - The latest write and registration for each shard are kept in
/// `self.datas`.
/// - All unapplied writes and registrations are kept in `self.datas`.
/// - All writes in `self.datas` are contained by some registration in
/// `self.datas`.
fn compact_data_times(&mut self, data_id: &ShardId) {
let Some(times) = self.datas.get_mut(data_id) else {
return;
};
debug!("cache compact {:.9} times={:?}", data_id.to_string(), times);
if let Some(unapplied_write_ts) = self
.unapplied_batches
.first_key_value()
.map(|(_, (_, _, ts))| ts)
{
debug!(
"cache compact {:.9} unapplied_write_ts={:?}",
data_id.to_string(),
unapplied_write_ts,
);
while let Some(write_ts) = times.writes.front() {
if times.writes.len() == 1 || write_ts >= unapplied_write_ts {
break;
}
times.writes.pop_front();
}
} else {
times.writes.drain(..times.writes.len() - 1);
}
let unapplied_reg_ts = self.unapplied_registers.front().map(|(_, ts)| ts);
let min_write_ts = times.writes.front();
let min_reg_ts = [unapplied_reg_ts, min_write_ts].into_iter().flatten().min();
if let Some(min_reg_ts) = min_reg_ts {
debug!(
"cache compact {:.9} unapplied_reg_ts={:?} min_write_ts={:?} min_reg_ts={:?}",
data_id.to_string(),
unapplied_reg_ts,
min_write_ts,
min_reg_ts,
);
while let Some(reg) = times.registered.front() {
match ®.forget_ts {
Some(forget_ts) if forget_ts >= min_reg_ts => break,
_ if times.registered.len() == 1 => break,
_ => {
assert!(
reg.forget_ts.is_some(),
"only the latest reg can have no forget ts"
);
times.registered.pop_front();
}
}
}
} else {
times.registered.drain(..times.registered.len() - 1);
}
debug!(
"cache compact DONE {:.9} times={:?}",
data_id.to_string(),
times
);
}
pub(crate) fn update_gauges(&self, metrics: &Metrics) {
metrics
.data_shard_count
.set(u64::cast_from(self.datas.len()));
metrics
.batches
.unapplied_count
.set(u64::cast_from(self.unapplied_batches.len()));
let unapplied_batches_bytes = self
.unapplied_batches
.values()
.map(|(_, x, _)| x.len())
.sum::<usize>();
metrics
.batches
.unapplied_bytes
.set(u64::cast_from(unapplied_batches_bytes));
metrics
.batches
.unapplied_min_ts
.set(encode_ts_metric(&Antichain::from_elem(
self.min_unapplied_ts().clone(),
)));
}
fn assert_only_data_id(&self, data_id: &ShardId) {
if let Some(only_data_id) = self.only_data_id.as_ref() {
assert_eq!(data_id, only_data_id);
}
}
pub(crate) fn validate(&self) -> Result<(), String> {
// Unapplied batches are all indexed and sorted.
if self.batch_idx.len() != self.unapplied_batches.len() {
return Err(format!(
"expected index len {} to match what it's indexing {}",
self.batch_idx.len(),
self.unapplied_batches.len()
));
}
let mut prev_batch_ts = T::minimum();
for (idx, (_, batch, ts)) in self.unapplied_batches.iter() {
if self.batch_idx.get(batch) != Some(idx) {
return Err(format!(
"expected batch to be indexed at {} got {:?}",
idx,
self.batch_idx.get(batch)
));
}
if ts < &prev_batch_ts {
return Err(format!(
"unapplied batch timestamp {:?} out of order after {:?}",
ts, prev_batch_ts
));
}
prev_batch_ts = ts.clone();
}
// Unapplied registers are sorted.
let mut prev_register_ts = T::minimum();
for (_, ts) in self.unapplied_registers.iter() {
if ts < &prev_register_ts {
return Err(format!(
"unapplied register timestamp {:?} out of order after {:?}",
ts, prev_register_ts
));
}
prev_register_ts = ts.clone();
}
let min_unapplied_ts = self.min_unapplied_ts_inner();
for (data_id, data_times) in self.datas.iter() {
let () = data_times.validate()?;
if let Some(ts) = data_times.writes.front() {
// Writes are compacted.
if min_unapplied_ts > ts && data_times.writes.len() > 1 {
return Err(format!(
"{:?} write ts {:?} not past min unapplied ts {:?}",
data_id, ts, min_unapplied_ts
));
}
}
// datas contains all unapplied writes.
if let Some((_, (_, _, unapplied_ts))) = self
.unapplied_batches
.iter()
.find(|(_, (shard_id, _, _))| shard_id == data_id)
{
if let Some(write_ts) = data_times.writes.front() {
if write_ts > unapplied_ts {
return Err(format!(
"{:?} min write ts {:?} past min unapplied batch ts {:?}",
data_id, write_ts, unapplied_ts
));
}
}
}
// datas contains all unapplied register/forgets.
if let Some((_, unapplied_ts)) = self
.unapplied_registers
.iter()
.find(|(shard_id, _)| shard_id == data_id)
{
let register_ts = &data_times.first_reg().register_ts;
if register_ts > unapplied_ts {
return Err(format!(
"{:?} min register ts {:?} past min unapplied register ts {:?}",
data_id, register_ts, unapplied_ts
));
}
}
}
Ok(())
}
}
impl<T: Timestamp + Lattice + TotalOrder + StepForward + Codec64, C: TxnsCodec> TxnsCache<T, C> {
/// Initialize the txn shard at `init_ts` and returns a [TxnsCache] reading
/// from that shard.
pub(crate) async fn init(
init_ts: T,
txns_read: ReadHandle<C::Key, C::Val, T, i64>,
txns_write: &mut WriteHandle<C::Key, C::Val, T, i64>,
) -> Self {
let () = crate::empty_caa(|| "txns init", txns_write, init_ts.clone()).await;
let mut ret = Self::from_read(txns_read, None).await;
let _ = ret.update_gt(&init_ts).await;
ret
}
/// Returns a [TxnsCache] reading from the given txn shard.
///
/// `txns_id` identifies which shard will be used as the txns WAL. MZ will
/// likely have one of these per env, used by all processes and the same
/// across restarts.
pub async fn open(
client: &PersistClient,
txns_id: ShardId,
only_data_id: Option<ShardId>,
) -> Self {
let (txns_key_schema, txns_val_schema) = C::schemas();
let txns_read = client
.open_leased_reader(
txns_id,
Arc::new(txns_key_schema),
Arc::new(txns_val_schema),
Diagnostics {
shard_name: "txns".to_owned(),
handle_purpose: "read txns".to_owned(),
},
USE_CRITICAL_SINCE_TXN.get(client.dyncfgs()),
)
.await
.expect("txns schema shouldn't change");
Self::from_read(txns_read, only_data_id).await
}
async fn from_read(
txns_read: ReadHandle<C::Key, C::Val, T, i64>,
only_data_id: Option<ShardId>,
) -> Self {
let (state, txns_subscribe) = TxnsCacheState::init::<C>(only_data_id, txns_read).await;
TxnsCache {
txns_subscribe,
buf: Vec::new(),
state,
}
}
/// Invariant: afterward, self.progress_exclusive will be > ts
///
/// Returns the `progress_exclusive` of the cache after updating.
#[must_use]
#[instrument(level = "debug", fields(ts = ?ts))]
pub async fn update_gt(&mut self, ts: &T) -> &T {
let only_data_id = self.only_data_id.clone();
Self::update(
&mut self.state,
&mut self.txns_subscribe,
&mut self.buf,
only_data_id,
|progress_exclusive| progress_exclusive > ts,
)
.await;
debug_assert!(&self.progress_exclusive > ts);
debug_assert_eq!(self.validate(), Ok(()));
&self.progress_exclusive
}
/// Invariant: afterward, self.progress_exclusive will be >= ts
///
/// Returns the `progress_exclusive` of the cache after updating.
#[must_use]
#[instrument(level = "debug", fields(ts = ?ts))]
pub async fn update_ge(&mut self, ts: &T) -> &T {
let only_data_id = self.only_data_id.clone();
Self::update(
&mut self.state,
&mut self.txns_subscribe,
&mut self.buf,
only_data_id,
|progress_exclusive| progress_exclusive >= ts,
)
.await;
debug_assert!(&self.progress_exclusive >= ts);
debug_assert_eq!(self.validate(), Ok(()));
&self.progress_exclusive
}
/// Listen to the txns shard for events until `done` returns true.
async fn update<F: Fn(&T) -> bool>(
state: &mut TxnsCacheState<T>,
txns_subscribe: &mut Subscribe<C::Key, C::Val, T, i64>,
buf: &mut Vec<(TxnsEntry, T, i64)>,
only_data_id: Option<ShardId>,
done: F,
) {
while !done(&state.progress_exclusive) {
let events = txns_subscribe.next(None).await;
for event in events {
match event {
ListenEvent::Progress(frontier) => {
let progress = frontier
.into_option()
.expect("nothing should close the txns shard");
state.push_entries(std::mem::take(buf), progress);
}
ListenEvent::Updates(parts) => {
Self::fetch_parts(only_data_id, txns_subscribe, parts, buf).await;
}
};
}
}
debug_assert_eq!(state.validate(), Ok(()));
debug!(
"cache correct before {:?} len={} least_ts={:?}",
state.progress_exclusive,
state.unapplied_batches.len(),
state
.unapplied_batches
.first_key_value()
.map(|(_, (_, _, ts))| ts),
);
}
pub(crate) async fn fetch_parts(
only_data_id: Option<ShardId>,
txns_subscribe: &mut Subscribe<C::Key, C::Val, T, i64>,
parts: Vec<LeasedBatchPart<T>>,
updates: &mut Vec<(TxnsEntry, T, i64)>,
) {
// We filter out unrelated data in two passes. The first is
// `should_fetch_part`, which allows us to skip entire fetches
// from s3/Blob. Then, if a part does need to be fetched, it
// still might contain info about unrelated data shards, and we
// filter those out before buffering in `updates`.
for part in parts {
let should_fetch_part = Self::should_fetch_part(only_data_id.as_ref(), &part);
debug!(
"should_fetch_part={} for {:?} {:?}",
should_fetch_part,
only_data_id,
part.stats()
);
if !should_fetch_part {
drop(part);
continue;
}
let part_updates = txns_subscribe.fetch_batch_part(part).await;
let part_updates = part_updates.map(|((k, v), t, d)| {
let (k, v) = (k.expect("valid key"), v.expect("valid val"));
(C::decode(k, v), t, d)
});
if let Some(only_data_id) = only_data_id.as_ref() {
updates.extend(part_updates.filter(|(x, _, _)| x.data_id() == only_data_id));
} else {
updates.extend(part_updates);
}
}
}
fn should_fetch_part(only_data_id: Option<&ShardId>, part: &LeasedBatchPart<T>) -> bool {
let Some(only_data_id) = only_data_id else {
return true;
};
// This `part.stats()` call involves decoding and the only_data_id=None
// case is common-ish, so make sure to keep it after that early return.
let Some(stats) = part.stats() else {
return true;
};
C::should_fetch_part(only_data_id, &stats).unwrap_or(true)
}
}
impl<T: Timestamp + Lattice + Codec64, C: TxnsCodec> Deref for TxnsCache<T, C> {
type Target = TxnsCacheState<T>;
fn deref(&self) -> &Self::Target {
&self.state
}
}
impl<T: Timestamp + Lattice + Codec64, C: TxnsCodec> DerefMut for TxnsCache<T, C> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.state
}
}
#[derive(Debug)]
pub(crate) struct DataTimes<T> {
/// The times at which the data shard was in the txns set.
///
/// Invariants:
///
/// - At least one registration (otherwise we filter this out of the cache).
/// - These are in increasing order.
/// - These are non-overlapping intervals.
/// - Everything in writes is in one of these intervals.
pub(crate) registered: VecDeque<DataRegistered<T>>,
/// Invariant: These are in increasing order.
pub(crate) writes: VecDeque<T>,
}
impl<T> Default for DataTimes<T> {
fn default() -> Self {
Self {
registered: Default::default(),
writes: Default::default(),
}
}
}
#[derive(Debug)]
pub(crate) struct DataRegistered<T> {
/// The inclusive time at which the data shard was added to the txns set.
///
/// If this time has been advanced by compaction, writes might be at times
/// equal to it.
pub(crate) register_ts: T,
/// The inclusive time at which the data shard was removed from the txns
/// set, or None if it hasn't yet been removed.
pub(crate) forget_ts: Option<T>,
}
impl<T: Timestamp + TotalOrder> DataRegistered<T> {
pub(crate) fn contains(&self, ts: &T) -> bool {
&self.register_ts <= ts && self.forget_ts.as_ref().map_or(true, |x| ts <= x)
}
}
impl<T: Timestamp + TotalOrder> DataTimes<T> {
pub(crate) fn last_reg(&self) -> &DataRegistered<T> {
self.registered.back().expect("at least one registration")
}
fn first_reg(&self) -> &DataRegistered<T> {
self.registered.front().expect("at least one registration")
}
/// Returns the latest known physical upper of a data shard.
fn latest_physical_ts(&self) -> &T {
let last_reg = self.last_reg();
let mut physical_ts = &last_reg.register_ts;
if let Some(forget_ts) = &last_reg.forget_ts {
physical_ts = max(physical_ts, forget_ts);
}
if let Some(latest_write) = self.writes.back() {
physical_ts = max(physical_ts, latest_write);
}
physical_ts
}
pub(crate) fn validate(&self) -> Result<(), String> {
// Writes are sorted.
let mut prev_ts = T::minimum();
for ts in self.writes.iter() {
if ts < &prev_ts {
return Err(format!(
"write ts {:?} out of order after {:?}",
ts, prev_ts
));
}
prev_ts = ts.clone();
}
// Registered is sorted and non-overlapping.
let mut prev_ts = T::minimum();
let mut writes_idx = 0;
for x in self.registered.iter() {
if x.register_ts < prev_ts {
return Err(format!(
"register ts {:?} out of order after {:?}",
x.register_ts, prev_ts
));
}
if let Some(forget_ts) = x.forget_ts.as_ref() {
if !(&x.register_ts <= forget_ts) {
return Err(format!(
"register ts {:?} not less_equal forget ts {:?}",
x.register_ts, forget_ts
));
}
prev_ts.clone_from(forget_ts);
}
// Also peel off any writes in this interval.
while let Some(write_ts) = self.writes.get(writes_idx) {
if write_ts < &x.register_ts {
return Err(format!(
"write ts {:?} not in any register interval {:?}",
write_ts, self.registered
));
}
if let Some(forget_ts) = x.forget_ts.as_ref() {
if write_ts <= forget_ts {
writes_idx += 1;
continue;
}
}
break;
}
}
// Check for writes after the last interval.
let Some(reg_back) = self.registered.back() else {
return Err("registered was empty".into());
};
if writes_idx != self.writes.len() && reg_back.forget_ts.is_some() {
return Err(format!(
"write ts {:?} not in any register interval {:?}",
self.writes, self.registered
));
}
Ok(())
}
}
#[derive(Debug)]
pub(crate) enum Unapplied<'a> {
RegisterForget,
Batch(Vec<&'a Vec<u8>>),
}
#[cfg(test)]
mod tests {
use mz_persist_client::PersistClient;
use mz_persist_types::codec_impls::{ShardIdSchema, VecU8Schema};
use DataListenNext::*;
use crate::operator::DataSubscribe;
use crate::tests::reader;
use crate::txns::TxnsHandle;
use super::*;
impl TxnsCache<u64, TxnsCodecDefault> {
pub(crate) async fn expect_open(
init_ts: u64,
txns: &TxnsHandle<String, (), u64, i64>,
) -> Self {
let mut ret = TxnsCache::open(&txns.datas.client, txns.txns_id(), None).await;
let _ = ret.update_gt(&init_ts).await;
ret
}
pub(crate) async fn expect_snapshot(
&mut self,
client: &PersistClient,
data_id: ShardId,
as_of: u64,
) -> Vec<String> {
let mut data_read = reader(client, data_id).await;
let _ = self.update_gt(&as_of).await;
let mut snapshot = self
.data_snapshot(data_read.shard_id(), as_of)
.snapshot_and_fetch(&mut data_read)
.await
.unwrap();
snapshot.sort();
snapshot
.into_iter()
.flat_map(|((k, v), _t, d)| {
let (k, ()) = (k.unwrap(), v.unwrap());
std::iter::repeat(k).take(usize::try_from(d).unwrap())
})
.collect()
}
pub(crate) fn expect_subscribe(
&self,
client: &PersistClient,
data_id: ShardId,
as_of: u64,
) -> DataSubscribe {
DataSubscribe::new(
"test",
client.clone(),
self.txns_id,
data_id,
as_of,
Antichain::new(),
true,
)
}
}
#[mz_ore::test]
fn txns_cache_data_snapshot_and_listen_next() {
let d0 = ShardId::new();
let ds = |latest_write: Option<u64>, as_of: u64, empty_to: u64| -> DataSnapshot<u64> {
DataSnapshot {
data_id: d0,
latest_write,
as_of,
empty_to,
}
};
#[track_caller]
fn testcase(
cache: &mut TxnsCacheState<u64>,
ts: u64,
data_id: ShardId,
snap_expected: DataSnapshot<u64>,
listen_expected: DataListenNext<u64>,
) {
cache.progress_exclusive = ts + 1;
assert_eq!(cache.data_snapshot(data_id, ts), snap_expected);
assert_eq!(cache.data_listen_next(&data_id, &ts), listen_expected);
assert_eq!(
cache.data_listen_next(&data_id, &(ts + 1)),
WaitForTxnsProgress
);
}
// This attempts to exercise all the various interesting edge cases of
// data_snapshot and data_listen_subscribe using the following sequence
// of events:
//
// - Registrations at: [2,8], [15,16]
// - Direct writes at: 1, 13
// - Writes via txns at: 4, 5, 7
let mut c = TxnsCacheState::new(ShardId::new(), 0, None);
// empty
assert_eq!(c.progress_exclusive, 0);
assert!(mz_ore::panic::catch_unwind(|| c.data_snapshot(d0, 0)).is_err());
assert_eq!(c.data_listen_next(&d0, &0), WaitForTxnsProgress);
// ts 0 (never registered)
testcase(&mut c, 0, d0, ds(None, 0, 1), ReadDataTo(1));
// ts 1 (direct write)
// - The cache knows everything < 2.
// - d0 is not registered in the cache.
// - We know the shard can't be written to via txn < 2.
// - So go read the shard normally up to 2.
testcase(&mut c, 1, d0, ds(None, 1, 2), ReadDataTo(2));
// ts 2 (register)
c.push_register(d0, 2, 1, 2);
testcase(&mut c, 2, d0, ds(None, 2, 3), ReadDataTo(3));
// ts 3 (registered, not written)
testcase(&mut c, 3, d0, ds(None, 3, 4), EmitLogicalProgress(4));
// ts 4 (written via txns)
c.push_append(d0, vec![4], 4, 1);
testcase(&mut c, 4, d0, ds(Some(4), 4, 5), ReadDataTo(5));
// ts 5 (written via txns, write at preceding ts)
c.push_append(d0, vec![5], 5, 1);
testcase(&mut c, 5, d0, ds(Some(5), 5, 6), ReadDataTo(6));
// ts 6 (registered, not written, write at preceding ts)
testcase(&mut c, 6, d0, ds(Some(5), 6, 7), EmitLogicalProgress(7));
// ts 7 (written via txns, write at non-preceding ts)
c.push_append(d0, vec![7], 7, 1);
testcase(&mut c, 7, d0, ds(Some(7), 7, 8), ReadDataTo(8));
// ts 8 (apply and tidy write from ts 4)
c.push_append(d0, vec![4], 8, -1);
testcase(&mut c, 8, d0, ds(Some(7), 8, 9), EmitLogicalProgress(9));
// ts 9 (apply and tidy write from ts 5)
c.push_append(d0, vec![5], 9, -1);
testcase(&mut c, 9, d0, ds(Some(7), 9, 10), EmitLogicalProgress(10));
// ts 10 (apply and tidy write from ts 7)
c.push_append(d0, vec![7], 10, -1);
testcase(&mut c, 10, d0, ds(None, 10, 11), EmitLogicalProgress(11));
// ts 11 (forget)
// Revisit when
// https://github.com/MaterializeInc/materialize/issues/25992 is fixed,
// it's unclear how to encode the register timestamp in a forget.
c.push_register(d0, 11, -1, 11);
testcase(&mut c, 11, d0, ds(None, 11, 12), ReadDataTo(12));
// ts 12 (not registered, not written). This ReadDataTo would block until
// the write happens at ts 13.
testcase(&mut c, 12, d0, ds(None, 12, 13), ReadDataTo(13));
// ts 13 (written directly)
testcase(&mut c, 13, d0, ds(None, 13, 14), ReadDataTo(14));
// ts 14 (not registered, not written) This ReadDataTo would block until
// the register happens at 15.
testcase(&mut c, 14, d0, ds(None, 14, 15), ReadDataTo(15));
// ts 15 (registered, previously forgotten)
c.push_register(d0, 15, 1, 15);
testcase(&mut c, 15, d0, ds(None, 15, 16), ReadDataTo(16));
// ts 16 (forgotten, registered at preceding ts)
// Revisit when
// https://github.com/MaterializeInc/materialize/issues/25992 is fixed,
// it's unclear how to encode the register timestamp in a forget.
c.push_register(d0, 16, -1, 16);
testcase(&mut c, 16, d0, ds(None, 16, 17), ReadDataTo(17));
// Now that we have more history, some of the old answers change! In
// particular, we have more information on unapplied writes, empty
// times, and can ReadDataTo much later times.
assert_eq!(c.data_snapshot(d0, 0), ds(None, 0, 1));
assert_eq!(c.data_snapshot(d0, 1), ds(None, 1, 2));
assert_eq!(c.data_snapshot(d0, 2), ds(None, 2, 3));
assert_eq!(c.data_snapshot(d0, 3), ds(None, 3, 4));
assert_eq!(c.data_snapshot(d0, 4), ds(None, 4, 5));
assert_eq!(c.data_snapshot(d0, 5), ds(None, 5, 6));
assert_eq!(c.data_snapshot(d0, 6), ds(None, 6, 7));
assert_eq!(c.data_snapshot(d0, 7), ds(None, 7, 8));
assert_eq!(c.data_snapshot(d0, 8), ds(None, 8, 9));
assert_eq!(c.data_snapshot(d0, 9), ds(None, 9, 10));
assert_eq!(c.data_snapshot(d0, 10), ds(None, 10, 11));
assert_eq!(c.data_snapshot(d0, 11), ds(None, 11, 12));
assert_eq!(c.data_snapshot(d0, 12), ds(None, 12, 13));
assert_eq!(c.data_snapshot(d0, 13), ds(None, 13, 14));
assert_eq!(c.data_snapshot(d0, 14), ds(None, 14, 15));
assert_eq!(c.data_snapshot(d0, 15), ds(None, 15, 16));
assert_eq!(c.data_snapshot(d0, 16), ds(None, 16, 17));
assert_eq!(c.data_listen_next(&d0, &0), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &1), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &2), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &3), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &4), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &5), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &6), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &7), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &8), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &9), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &10), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &11), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &12), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &13), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &14), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &15), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &16), ReadDataTo(17));
assert_eq!(c.data_listen_next(&d0, &17), WaitForTxnsProgress);
}
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // too slow
async fn empty_to() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let d0 = txns.expect_register(1).await;
// During code review, we discussed an alternate implementation of
// empty_to that was an Option: None when we knew about a write > the
// as_of, and Some when we didn't. The None case would mean that we
// don't need to CaA empty updates in. This is quite appealing, but
// would cause an issue with the guarantee that `apply_le(as_of)` is
// sufficient to unblock a read. Specifically:
//
// - Write at 3, but don't apply.
// - Write at 5, but don't apply.
// - Catch the cache up past the write at 5.
// - Run apply_le(4) to unblock a read a 4.
// - Run a snapshot at 4.
// - If nothing else applies the write at 5, the snapshot would
// deadlock.
for ts in [3, 5] {
let mut txn = txns.begin();
txn.write(&d0, "3".into(), (), 1).await;
let _apply = txn.commit_at(&mut txns, ts).await.unwrap();
}
let _ = txns.txns_cache.update_gt(&5).await;
txns.apply_le(&4).await;
let snap = txns.txns_cache.data_snapshot(d0, 4);
let mut data_read = reader(&client, d0).await;
// This shouldn't deadlock.
let contents = snap.snapshot_and_fetch(&mut data_read).await.unwrap();
assert_eq!(contents.len(), 1);
// Sanity check that the scenario played out like we said above.
assert_eq!(snap.empty_to, 5);
}
#[mz_ore::test]
fn data_times_validate() {
fn dt(register_forget_ts: &[u64], write_ts: &[u64]) -> Result<(), ()> {
let mut dt = DataTimes::default();
for x in register_forget_ts {
if let Some(back) = dt.registered.back_mut() {
if back.forget_ts == None {
back.forget_ts = Some(*x);
continue;
}
}
dt.registered.push_back(DataRegistered {
register_ts: *x,
forget_ts: None,
})
}
dt.writes = write_ts.into_iter().cloned().collect();
dt.validate().map_err(|_| ())
}
// Valid
assert_eq!(dt(&[1], &[2, 3]), Ok(()));
assert_eq!(dt(&[1, 3], &[2]), Ok(()));
assert_eq!(dt(&[1, 3, 5], &[2, 6, 7]), Ok(()));
assert_eq!(dt(&[1, 3, 5], &[2, 6, 7]), Ok(()));
assert_eq!(dt(&[1, 1], &[1]), Ok(()));
// Invalid
assert_eq!(dt(&[], &[]), Err(()));
assert_eq!(dt(&[1], &[0]), Err(()));
assert_eq!(dt(&[1, 3], &[4]), Err(()));
assert_eq!(dt(&[1, 3, 5], &[4]), Err(()));
assert_eq!(dt(&[1, 4], &[3, 2]), Err(()));
}
/// Regression test for a bug caught by higher level tests in CI:
/// - Commit a write at 5
/// - Apply it and commit the tidy retraction at 20.
/// - Catch up to both of these in the TxnsHandle and call compact_to(10).
/// The TxnsHandle knows the write has been applied and lets it CaDS the
/// txns shard since to 10.
/// - Open a TxnsCache starting at the txns shard since (10) to serve a
/// snapshot at 12. Catch it up through 12, but _not_ the tidy at 20.
/// - This TxnsCache gets the write with a ts compacted forward to 10, but
/// no retraction. The snapshot resolves with an incorrect latest_write of
/// `Some(10)`.
/// - The unblock read waits for this write to be applied before doing the
/// empty CaA, but this write never existed so it hangs forever.
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn regression_compact_latest_write() {
let client = PersistClient::new_for_tests().await;
let mut txns = TxnsHandle::expect_open(client.clone()).await;
let log = txns.new_log();
let d0 = txns.expect_register(1).await;
let tidy_5 = txns.expect_commit_at(5, d0, &["5"], &log).await;
let _ = txns.expect_commit_at(15, d0, &["15"], &log).await;
txns.tidy_at(20, tidy_5).await.unwrap();
let _ = txns.txns_cache.update_gt(&20).await;
assert_eq!(txns.txns_cache.min_unapplied_ts(), &15);
txns.compact_to(10).await;
let mut txns_read = client
.open_leased_reader(
txns.txns_id(),
Arc::new(ShardIdSchema),
Arc::new(VecU8Schema),
Diagnostics::for_tests(),
true,
)
.await
.expect("txns schema shouldn't change");
txns_read.downgrade_since(&Antichain::from_elem(10)).await;
let mut cache = TxnsCache::<_, TxnsCodecDefault>::from_read(txns_read, None).await;
let _ = cache.update_gt(&15).await;
let snap = cache.data_snapshot(d0, 12);
assert_eq!(snap.latest_write, Some(5));
}
// Regression test for a bug where we were sorting TxnEvents by the
// compacted timestamp instead of the original one when applying them to a
// cache. This caused them to be applied in a surprising order (e.g. forget
// before register).
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn regression_ts_sort() {
let client = PersistClient::new_for_tests().await;
let txns = TxnsHandle::expect_open(client.clone()).await;
let mut cache = TxnsCache::expect_open(0, &txns).await;
let d0 = ShardId::new();
// With the bug, this panics via an internal sanity assertion.
cache.push_entries(
vec![
(TxnsEntry::Register(d0, u64::encode(&2)), 2, -1),
(TxnsEntry::Register(d0, u64::encode(&1)), 2, 1),
],
3,
);
}
/// Tests that `data_snapshot` and `data_listen_next` properly handle an
/// `init_ts` > 0.
#[mz_ore::test(tokio::test)]
#[cfg_attr(miri, ignore)] // unsupported operation: returning ready events from epoll_wait is not yet implemented
async fn data_compacted() {
let d0 = ShardId::new();
let mut c = TxnsCacheState::new(ShardId::new(), 10, None);
c.progress_exclusive = 20;
assert!(mz_ore::panic::catch_unwind(|| c.data_listen_next(&d0, &0)).is_err());
let ds = c.data_snapshot(d0, 0);
assert_eq!(
ds,
DataSnapshot {
data_id: d0,
latest_write: None,
as_of: 0,
empty_to: 10,
}
);
}
}