1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Planning of linear joins.

use std::collections::HashMap;

use crate::plan::join::JoinBuildState;
use crate::plan::join::JoinClosure;
use crate::plan::AvailableCollections;
use mz_expr::MapFilterProject;

use mz_expr::join_permutations;
use mz_expr::permutation_for_arrangement;
use mz_expr::MirScalarExpr;
use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use proptest::prelude::*;
use proptest::result::Probability;
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};

use super::ProtoLinearJoinPlan;
use super::ProtoLinearStagePlan;
use super::ProtoMirScalarVec;

/// A plan for the execution of a linear join.
///
/// A linear join is a sequence of stages, each of which introduces
/// a new collection. Each stage is represented by a [LinearStagePlan].
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
pub struct LinearJoinPlan {
    /// The source relation from which we start the join.
    pub source_relation: usize,
    /// The arrangement to use for the source relation, if any
    pub source_key: Option<Vec<MirScalarExpr>>,
    /// An initial closure to apply before any stages.
    ///
    /// Values of `None` indicate the identity closure.
    pub initial_closure: Option<JoinClosure>,
    /// A *sequence* of stages to apply one after the other.
    pub stage_plans: Vec<LinearStagePlan>,
    /// A concluding closure to apply after the last stage.
    ///
    /// Values of `None` indicate the identity closure.
    pub final_closure: Option<JoinClosure>,
}

impl Arbitrary for LinearJoinPlan {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
        (
            any::<usize>(),
            any_with::<Option<Vec<MirScalarExpr>>>((Probability::default(), ((0..3).into(), ()))),
            any::<Option<JoinClosure>>(),
            prop::collection::vec(any::<LinearStagePlan>(), 0..3),
            any::<Option<JoinClosure>>(),
        )
            .prop_map(
                |(source_relation, source_key, initial_closure, stage_plans, final_closure)| {
                    LinearJoinPlan {
                        source_relation,
                        source_key,
                        initial_closure,
                        stage_plans,
                        final_closure,
                    }
                },
            )
            .boxed()
    }
}

impl RustType<ProtoLinearJoinPlan> for LinearJoinPlan {
    fn into_proto(&self) -> ProtoLinearJoinPlan {
        ProtoLinearJoinPlan {
            source_relation: self.source_relation.into_proto(),
            source_key: self.source_key.into_proto(),
            initial_closure: self.initial_closure.into_proto(),
            stage_plans: self.stage_plans.into_proto(),
            final_closure: self.final_closure.into_proto(),
        }
    }

    fn from_proto(proto: ProtoLinearJoinPlan) -> Result<Self, TryFromProtoError> {
        Ok(LinearJoinPlan {
            source_relation: proto.source_relation.into_rust()?,
            source_key: proto.source_key.into_rust()?,
            initial_closure: proto.initial_closure.into_rust()?,
            stage_plans: proto.stage_plans.into_rust()?,
            final_closure: proto.final_closure.into_rust()?,
        })
    }
}

impl RustType<ProtoMirScalarVec> for Vec<MirScalarExpr> {
    fn into_proto(&self) -> ProtoMirScalarVec {
        ProtoMirScalarVec {
            values: self.into_proto(),
        }
    }

    fn from_proto(proto: ProtoMirScalarVec) -> Result<Self, TryFromProtoError> {
        proto.values.into_rust()
    }
}

/// A plan for the execution of one stage of a linear join.
///
/// Each stage is a binary join between the current accumulated
/// join results, and a new collection. The former is referred to
/// as the "stream" and the latter the "lookup".
#[derive(Arbitrary, Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
pub struct LinearStagePlan {
    /// The relation index into which we will look up.
    pub lookup_relation: usize,
    /// The key expressions to use for the streamed relation.
    ///
    /// While this starts as a stream of the source relation,
    /// it evolves through multiple lookups and ceases to be
    /// the same thing, hence the different name.
    pub stream_key: Vec<MirScalarExpr>,
    /// The thinning expression to
    /// use to remove redundant value columns when
    /// arranging the stream.
    pub stream_thinning: Vec<usize>,
    /// The key expressions to use for the lookup relation.
    pub lookup_key: Vec<MirScalarExpr>,
    /// The closure to apply to the concatenation of columns
    /// of the stream and lookup relations.
    pub closure: JoinClosure,
}

impl RustType<ProtoLinearStagePlan> for LinearStagePlan {
    fn into_proto(&self) -> ProtoLinearStagePlan {
        ProtoLinearStagePlan {
            lookup_relation: self.lookup_relation.into_proto(),
            stream_key: self.stream_key.into_proto(),
            stream_thinning: self.stream_thinning.into_proto(),
            lookup_key: self.lookup_key.into_proto(),
            closure: Some(self.closure.into_proto()),
        }
    }

    fn from_proto(proto: ProtoLinearStagePlan) -> Result<Self, TryFromProtoError> {
        Ok(Self {
            lookup_relation: proto.lookup_relation.into_rust()?,
            stream_key: proto.stream_key.into_rust()?,
            stream_thinning: proto.stream_thinning.into_rust()?,
            lookup_key: proto.lookup_key.into_rust()?,
            closure: proto
                .closure
                .into_rust_if_some("ProtoLinearStagePlan::closure")?,
        })
    }
}

impl LinearJoinPlan {
    /// Create a new join plan from the required arguments.
    pub fn create_from(
        source_relation: usize,
        source_arrangement: Option<&(Vec<MirScalarExpr>, HashMap<usize, usize>, Vec<usize>)>,
        equivalences: &[Vec<MirScalarExpr>],
        join_order: &[(usize, Vec<MirScalarExpr>)],
        input_mapper: mz_expr::JoinInputMapper,
        mfp_above: &mut MapFilterProject,
        available: &[AvailableCollections],
    ) -> (Self, Vec<AvailableCollections>) {
        let mut requested: Vec<AvailableCollections> =
            vec![Default::default(); input_mapper.total_inputs()];
        let temporal_mfp = mfp_above.extract_temporal();
        // Construct initial join build state.
        // This state will evolves as we build the join dataflow.
        let mut join_build_state = JoinBuildState::new(
            input_mapper.global_columns(source_relation),
            &equivalences,
            &mfp_above,
        );

        let unthinned_source_arity = input_mapper.input_arity(source_relation);
        let (initial_closure, source_key) =
            if let Some((key, permutation, thinning)) = source_arrangement {
                let mut mfp = MapFilterProject::new(unthinned_source_arity);
                mfp.permute(permutation.clone(), key.len() + thinning.len());
                let mfp = mfp.into_plan().unwrap().into_nontemporal().unwrap();
                (
                    Some(JoinClosure {
                        ready_equivalences: vec![],
                        before: mfp,
                    }),
                    Some(key.clone()),
                )
            } else {
                (None, None)
            };
        let mut unthinned_stream_arity = initial_closure
            .as_ref()
            .map(|closure| closure.before.projection.len())
            .unwrap_or(unthinned_source_arity);
        // Sequence of steps to apply.
        let mut stage_plans = Vec::with_capacity(join_order.len());

        // Track the set of bound input relations, for equivalence resolution.
        let mut bound_inputs = vec![source_relation];

        // Iterate through the join order instructions, assembling keys and
        // closures to use.
        for (lookup_relation, lookup_key) in join_order.iter() {
            let available = &available[*lookup_relation];

            let (lookup_permutation, lookup_thinning) = available
                .arranged
                .iter()
                .find_map(|(key, permutation, thinning)| {
                    if key == lookup_key {
                        Some((permutation.clone(), thinning.clone()))
                    } else {
                        None
                    }
                })
                .unwrap_or_else(|| {
                    let (permutation, thinning) = permutation_for_arrangement::<HashMap<_, _>>(
                        lookup_key,
                        input_mapper.input_arity(*lookup_relation),
                    );
                    requested[*lookup_relation].arranged.push((
                        lookup_key.clone(),
                        permutation.clone(),
                        thinning.clone(),
                    ));
                    (permutation, thinning)
                });
            // rebase the intended key to use global column identifiers.
            let lookup_key_rebased = lookup_key
                .iter()
                .map(|k| input_mapper.map_expr_to_global(k.clone(), *lookup_relation))
                .collect::<Vec<_>>();

            // Expressions to use as a key for the stream of incoming updates
            // are determined by locating the elements of `lookup_key` among
            // the existing bound `columns`. If that cannot be done, the plan
            // is irrecoverably defective and we panic.
            // TODO: explicitly validate this before rendering.
            let stream_key = lookup_key_rebased
                .iter()
                .map(|expr| {
                    let mut bound_expr = input_mapper
                        .find_bound_expr(expr, &bound_inputs, &join_build_state.equivalences)
                        .expect("Expression in join plan is not bound at time of use");
                    // Rewrite column references to physical locations.
                    bound_expr.permute_map(&join_build_state.column_map);
                    bound_expr
                })
                .collect::<Vec<_>>();
            let (stream_permutation, stream_thinning) =
                permutation_for_arrangement::<HashMap<_, _>>(&stream_key, unthinned_stream_arity);
            let key_arity = stream_key.len();
            let permutation = join_permutations(
                key_arity,
                stream_permutation.clone(),
                stream_thinning.len(),
                lookup_permutation.clone(),
            );
            // Introduce new columns and expressions they enable. Form a new closure.
            let closure = join_build_state.add_columns(
                input_mapper.global_columns(*lookup_relation),
                &lookup_key_rebased,
                key_arity + stream_thinning.len() + lookup_thinning.len(),
                permutation,
            );
            let new_unthinned_stream_arity = closure.before.projection.len();

            bound_inputs.push(*lookup_relation);

            // record the stage plan as next in the path.
            stage_plans.push(LinearStagePlan {
                lookup_relation: *lookup_relation,
                stream_key,
                stream_thinning,
                lookup_key: lookup_key.clone(),
                closure,
            });
            unthinned_stream_arity = new_unthinned_stream_arity;
        }

        // determine a final closure, and complete the path plan.
        let final_closure = join_build_state.complete();
        let final_closure = if final_closure.is_identity() {
            None
        } else {
            Some(final_closure)
        };

        // Now that `map_filter_project` has been captured in the state builder,
        // assign the remaining temporal predicates to it, for the caller's use.
        *mfp_above = temporal_mfp;

        // Form and return the complete join plan.
        let plan = LinearJoinPlan {
            source_relation,
            source_key,
            initial_closure,
            stage_plans,
            final_closure,
        };
        (plan, requested)
    }
}