1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Derive decoders for Rust structs from Avro values.
/// Currently, only the simplest possible case is supported:
/// decoding an Avro record into a struct, each of whose fields
/// is named the same as the corresponding Avro record field
/// and which is in turn decodable without external state.
///
/// Example:
///
/// ```ignore
/// fn make_complicated_decoder() -> impl AvroDecode<Out = SomeComplicatedType> {
/// unimplemented!()
/// }
/// #[derive(AvroDecodable)]
/// struct MyType {
/// x: i32,
/// y: u64,
/// #[decoder_factory(make_complicated_decoder)]
/// z: SomeComplicatedType
/// }
/// ```
///
/// This will create an Avro decoder that expects a record with fields "x", "y", and "z"
/// (and possibly others), where "x" and "y" are of Avro type Int or Long and their
/// values fit in an `i32` or `u64` respectively,
/// and where "z" can be decoded by the decoder returned from `make_complicated_decoder`.
///
/// This crate currently works by generating a struct named (following the example above)
/// MyType_DECODER which is used internally by the `AvroDecodable` implementation.
/// It also requires that the `mz-avro` crate be linked under its default name.
use proc_macro::TokenStream;
use quote::{format_ident, quote};
use syn::{parse_macro_input, ItemStruct};
#[proc_macro_derive(AvroDecodable, attributes(decoder_factory, state_type, state_expr))]
pub fn derive_decodeable(item: TokenStream) -> TokenStream {
let input = parse_macro_input!(item as ItemStruct);
let state_type = input
.attrs
.iter()
.find(|a| &a.path.get_ident().as_ref().unwrap().to_string() == "state_type")
.map(|a| a.tokens.clone())
.unwrap_or(quote! {()});
let name = input.ident;
let base_fields: Vec<_> = input
.fields
.iter()
.map(|f| f.ident.as_ref().unwrap())
.collect();
let fields: Vec<_> = input
.fields
.iter()
.map(|f| {
// The type of the field,
// which must itself be AvroDecodable so that we can recursively
// decode it.
let ty = &f.ty;
let id = f.ident.as_ref().unwrap();
quote! {
#id: Option<#ty>
}
})
.collect();
let field_state_exprs: Vec<_> = input
.fields
.iter()
.map(|f| {
f.attrs
.iter()
.find(|a| &a.path.get_ident().as_ref().unwrap().to_string() == "state_expr")
.map(|a| a.tokens.clone())
.unwrap_or(quote! {()})
})
.collect();
let decode_blocks: Vec<_> = input
.fields
.iter()
.zip(field_state_exprs.iter())
.map(|(f, state_expr)| {
// The type of the field,
// which must itself be StatefulAvroDecodable so that we can recursively
// decode it.
let ty = &f.ty;
let id = f.ident.as_ref().unwrap();
let id_str = id.to_string();
let found_twice = format!("field `{}` found twice", id);
let make_decoder =
if let Some(decoder_factory) = f.attrs.iter().find(|a| {
&a.path.get_ident().as_ref().unwrap().to_string() == "decoder_factory"
}) {
let toks = &decoder_factory.tokens;
quote! {
#toks()
}
} else {
quote! {
<#ty as ::mz_avro::StatefulAvroDecodable>::new_decoder(#state_expr)
}
};
quote! {
#id_str => {
if self.#id.is_some() {
return Err(::mz_avro::error::Error::Decode(::mz_avro::error::DecodeError::Custom(#found_twice.to_string())));
}
let decoder = #make_decoder;
self.#id = Some(field.decode_field(decoder)?);
}
}
})
.collect();
let check_blocks: Vec<_> = input
.fields
.iter()
.map(|f| {
let id = f.ident.as_ref().unwrap();
let not_found = format!("field `{}` not found", id);
quote! {
let #id = if let Some(#id) = self.#id.take() {
#id
} else {
return Err(::mz_avro::error::Error::Decode(::mz_avro::error::DecodeError::Custom(#not_found.to_string())));
};
}
})
.collect();
let return_fields: Vec<_> = input
.fields
.iter()
.map(|f| f.ident.as_ref().unwrap())
.collect();
let decoder_name = format_ident!("{}_DECODER", name);
let out = quote! {
#[derive(Debug)]
#[allow(non_camel_case_types)]
struct #decoder_name {
_STATE: #state_type,
#(#fields),*
}
impl ::mz_avro::AvroDecode for #decoder_name {
type Out = #name;
fn record<R: ::mz_avro::AvroRead, A: ::mz_avro::AvroRecordAccess<R>>(
mut self,
a: &mut A,
) -> ::std::result::Result<#name, ::mz_avro::error::Error> {
while let Some((name, _idx, field)) = a.next_field()? {
match name {
#(#decode_blocks)*
_ => {
field.decode_field(::mz_avro::TrivialDecoder)?;
}
}
}
#(#check_blocks)*
Ok(#name {
#(#return_fields),*
})
}
::mz_avro::define_unexpected! {
union_branch, array, map, enum_variant, scalar, decimal, bytes, string, json, uuid, fixed
}
}
impl ::mz_avro::StatefulAvroDecodable for #name {
type Decoder = #decoder_name;
type State = #state_type;
fn new_decoder(state: #state_type) -> #decoder_name {
#decoder_name {
_STATE: state,
#(#base_fields: None),*
}
}
}
};
TokenStream::from(out)
}