1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An interface/trait that provides write and read timestamps, reads observe
//! exactly their preceding writes.
//!
//! Specifically, all read timestamps will be greater or equal to all previously
//! reported completed write timestamps, and strictly less than all subsequently
//! emitted write timestamps.
use std::sync::Arc;
use async_trait::async_trait;
use mz_ore::now::NowFn;
use crate::coord::timeline::WriteTimestamp;
pub mod batching_oracle;
pub mod catalog_oracle;
pub mod metrics;
pub mod postgres_oracle;
pub mod retry;
/// A type that provides write and read timestamps, reads observe exactly their
/// preceding writes.
///
/// Specifically, all read timestamps will be greater or equal to all previously
/// reported completed write timestamps, and strictly less than all subsequently
/// emitted write timestamps.
#[async_trait(?Send)]
pub trait TimestampOracle<T> {
/// Acquire a new timestamp for writing.
///
/// This timestamp will be strictly greater than all prior values of
/// `self.read_ts()` and `self.write_ts()`.
async fn write_ts(&mut self) -> WriteTimestamp<T>;
/// Peek the current write timestamp.
async fn peek_write_ts(&self) -> T;
/// Acquire a new timestamp for reading.
///
/// This timestamp will be greater or equal to all prior values of
/// `self.apply_write(write_ts)`, and strictly less than all subsequent
/// values of `self.write_ts()`.
async fn read_ts(&self) -> T;
/// Mark a write at `write_ts` completed.
///
/// All subsequent values of `self.read_ts()` will be greater or equal to
/// `write_ts`.
///
/// This function must uphold these invariants, both before and after a call:
///
/// - Never decrease the write timestamp
/// - Read timestamp is >= input
/// - Write timestamp is >= read timestamp
///
/// The three scenarios and outcomes for calling this method are:
///
/// - input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
/// - r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
/// - r_0 <= w_0 <= input -> r_1 = input and w_1 = input
async fn apply_write(&mut self, write_ts: T);
/// Get a shared, shallow clone of the oracle. Returns `None` if this oracle
/// is not shareable.
fn get_shared(&self) -> Option<Arc<dyn ShareableTimestampOracle<T> + Send + Sync>>;
}
/// A shareable version of [`TimestampOracle`] that is `Send` and `Sync`.
///
/// We have this as a stop-gap solution while we still keep the legacy
/// in-memory/backed-by-catalog TimestampOracle around. Once we remove that we can
/// make [`TimestampOracle`] shareable.
#[async_trait]
pub trait ShareableTimestampOracle<T> {
/// Acquire a new timestamp for writing.
///
/// This timestamp will be strictly greater than all prior values of
/// `self.read_ts()` and `self.write_ts()`.
async fn write_ts(&self) -> WriteTimestamp<T>;
/// Peek the current write timestamp.
async fn peek_write_ts(&self) -> T;
/// Acquire a new timestamp for reading.
///
/// This timestamp will be greater or equal to all prior values of
/// `self.apply_write(write_ts)`, and strictly less than all subsequent
/// values of `self.write_ts()`.
async fn read_ts(&self) -> T;
/// Mark a write at `write_ts` completed.
///
/// All subsequent values of `self.read_ts()` will be greater or equal to
/// `write_ts`.
async fn apply_write(&self, lower_bound: T);
}
/// A [`NowFn`] that is generic over the timestamp.
///
/// The oracle operations work in terms of [`mz_repr::Timestamp`] and we could
/// work around it by bridging between the two in the oracle implementation
/// itself. This wrapper type makes that slightly easier, though.
pub trait GenericNowFn<T>: Clone + Send + Sync {
fn now(&self) -> T;
}
impl GenericNowFn<mz_repr::Timestamp> for NowFn {
fn now(&self) -> mz_repr::Timestamp {
(self)().into()
}
}
#[cfg(test)]
mod tests {
use futures::Future;
use mz_repr::Timestamp;
use super::*;
// These test methods are meant to be used by tests for timestamp oracle
// implementations.
pub async fn timestamp_oracle_impl_test<
C: TimestampOracle<Timestamp>,
F: Future<Output = C>,
NewFn: FnMut(String, NowFn, Timestamp) -> F,
>(
mut new_fn: NewFn,
) -> Result<(), anyhow::Error> {
// Normally, these could all be separate test methods but we bundle them
// all together so that it's easier to call this one test method from
// the implementation tests.
// Timestamp::MIN as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
// Timestamp::MAX as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MAX).await;
assert_eq!(oracle.read_ts().await, Timestamp::MAX);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MAX);
// Timestamp::MAX-1 from NowFn. We have to step back by one, otherwise
// `write_ts` can't determine the "advance_to" timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let mut oracle = new_fn(
timeline,
NowFn::from(|| Timestamp::MAX.step_back().expect("known to work").into()),
Timestamp::MIN,
)
.await;
// At first, read_ts and peek_write_ts stay where they are.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
assert_eq!(
oracle.write_ts().await.timestamp,
Timestamp::MAX.step_back().expect("known to work")
);
// Now peek_write_ts jump to MAX-1 but read_ts stays.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(
oracle.peek_write_ts().await,
Timestamp::MAX.step_back().expect("known to work")
);
// Repeated write_ts calls advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
// Repeated peek_write_ts calls _DON'T_ advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.peek_write_ts().await, 0u64.into());
assert_eq!(oracle.peek_write_ts().await, 0u64.into());
// Interesting scenarios around apply_write, from its rustdoc.
//
// Scenario #1:
// input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 10u64.into()).await;
oracle.apply_write(5u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 10u64.into());
assert_eq!(oracle.read_ts().await, 10u64.into());
// Scenario #2:
// r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
// Have to bump the write_ts up manually:
assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 3u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 4u64.into());
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 4u64.into());
assert_eq!(oracle.read_ts().await, 2u64.into());
// Scenario #3:
// r_0 <= w_0 <= input -> r_1 = input and w_1 = input
let timeline = uuid::Uuid::new_v4().to_string();
let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 2u64.into());
assert_eq!(oracle.read_ts().await, 2u64.into());
oracle.apply_write(4u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 4u64.into());
assert_eq!(oracle.read_ts().await, 4u64.into());
Ok(())
}
pub async fn shareable_timestamp_oracle_impl_test<F, NewFn>(
mut new_fn: NewFn,
) -> Result<(), anyhow::Error>
where
F: Future<Output = Arc<dyn ShareableTimestampOracle<Timestamp> + Send + Sync>>,
NewFn: FnMut(String, NowFn, Timestamp) -> F,
{
// Normally, these could all be separate test methods but we bundle them
// all together so that it's easier to call this one test method from
// the implementation tests.
// Timestamp::MIN as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
// Timestamp::MAX as initial timestamp
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MAX).await;
assert_eq!(oracle.read_ts().await, Timestamp::MAX);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MAX);
// Timestamp::MAX-1 from NowFn. We have to step back by one, otherwise
// `write_ts` can't determine the "advance_to" timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(
timeline,
NowFn::from(|| Timestamp::MAX.step_back().expect("known to work").into()),
Timestamp::MIN,
)
.await;
// At first, read_ts and peek_write_ts stay where they are.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
assert_eq!(
oracle.write_ts().await.timestamp,
Timestamp::MAX.step_back().expect("known to work")
);
// Now peek_write_ts jump to MAX-1 but read_ts stays.
assert_eq!(oracle.read_ts().await, Timestamp::MIN);
assert_eq!(
oracle.peek_write_ts().await,
Timestamp::MAX.step_back().expect("known to work")
);
// Repeated write_ts calls advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
// Repeated peek_write_ts calls _DON'T_ advance the timestamp.
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
assert_eq!(oracle.peek_write_ts().await, 0u64.into());
assert_eq!(oracle.peek_write_ts().await, 0u64.into());
// Interesting scenarios around apply_write, from its rustdoc.
//
// Scenario #1:
// input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 10u64.into()).await;
oracle.apply_write(5u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 10u64.into());
assert_eq!(oracle.read_ts().await, 10u64.into());
// Scenario #2:
// r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
// Have to bump the write_ts up manually:
assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 3u64.into());
assert_eq!(oracle.write_ts().await.timestamp, 4u64.into());
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 4u64.into());
assert_eq!(oracle.read_ts().await, 2u64.into());
// Scenario #3:
// r_0 <= w_0 <= input -> r_1 = input and w_1 = input
let timeline = uuid::Uuid::new_v4().to_string();
let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
oracle.apply_write(2u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 2u64.into());
assert_eq!(oracle.read_ts().await, 2u64.into());
oracle.apply_write(4u64.into()).await;
assert_eq!(oracle.peek_write_ts().await, 4u64.into());
assert_eq!(oracle.read_ts().await, 4u64.into());
Ok(())
}
}