1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! An interface/trait that provides write and read timestamps, reads observe
//! exactly their preceding writes.
//!
//! Specifically, all read timestamps will be greater or equal to all previously
//! reported completed write timestamps, and strictly less than all subsequently
//! emitted write timestamps.

use std::sync::Arc;

use async_trait::async_trait;
use mz_ore::now::NowFn;

use crate::coord::timeline::WriteTimestamp;

pub mod batching_oracle;
pub mod catalog_oracle;
pub mod metrics;
pub mod postgres_oracle;
pub mod retry;

/// A type that provides write and read timestamps, reads observe exactly their
/// preceding writes.
///
/// Specifically, all read timestamps will be greater or equal to all previously
/// reported completed write timestamps, and strictly less than all subsequently
/// emitted write timestamps.
#[async_trait(?Send)]
pub trait TimestampOracle<T> {
    /// Acquire a new timestamp for writing.
    ///
    /// This timestamp will be strictly greater than all prior values of
    /// `self.read_ts()` and `self.write_ts()`.
    async fn write_ts(&mut self) -> WriteTimestamp<T>;

    /// Peek the current write timestamp.
    async fn peek_write_ts(&self) -> T;

    /// Acquire a new timestamp for reading.
    ///
    /// This timestamp will be greater or equal to all prior values of
    /// `self.apply_write(write_ts)`, and strictly less than all subsequent
    /// values of `self.write_ts()`.
    async fn read_ts(&self) -> T;

    /// Mark a write at `write_ts` completed.
    ///
    /// All subsequent values of `self.read_ts()` will be greater or equal to
    /// `write_ts`.
    ///
    /// This function must uphold these invariants, both before and after a call:
    ///
    /// - Never decrease the write timestamp
    /// - Read timestamp is >= input
    /// - Write timestamp is >= read timestamp
    ///
    /// The three scenarios and outcomes for calling this method are:
    ///
    /// - input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
    /// - r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
    /// - r_0 <= w_0 <= input -> r_1 = input and w_1 = input
    async fn apply_write(&mut self, write_ts: T);

    /// Get a shared, shallow clone of the oracle. Returns `None` if this oracle
    /// is not shareable.
    fn get_shared(&self) -> Option<Arc<dyn ShareableTimestampOracle<T> + Send + Sync>>;
}

/// A shareable version of [`TimestampOracle`] that is `Send` and `Sync`.
///
/// We have this as a stop-gap solution while we still keep the legacy
/// in-memory/backed-by-catalog TimestampOracle around. Once we remove that we can
/// make [`TimestampOracle`] shareable.
#[async_trait]
pub trait ShareableTimestampOracle<T> {
    /// Acquire a new timestamp for writing.
    ///
    /// This timestamp will be strictly greater than all prior values of
    /// `self.read_ts()` and `self.write_ts()`.
    async fn write_ts(&self) -> WriteTimestamp<T>;

    /// Peek the current write timestamp.
    async fn peek_write_ts(&self) -> T;

    /// Acquire a new timestamp for reading.
    ///
    /// This timestamp will be greater or equal to all prior values of
    /// `self.apply_write(write_ts)`, and strictly less than all subsequent
    /// values of `self.write_ts()`.
    async fn read_ts(&self) -> T;

    /// Mark a write at `write_ts` completed.
    ///
    /// All subsequent values of `self.read_ts()` will be greater or equal to
    /// `write_ts`.
    async fn apply_write(&self, lower_bound: T);
}

/// A [`NowFn`] that is generic over the timestamp.
///
/// The oracle operations work in terms of [`mz_repr::Timestamp`] and we could
/// work around it by bridging between the two in the oracle implementation
/// itself. This wrapper type makes that slightly easier, though.
pub trait GenericNowFn<T>: Clone + Send + Sync {
    fn now(&self) -> T;
}

impl GenericNowFn<mz_repr::Timestamp> for NowFn {
    fn now(&self) -> mz_repr::Timestamp {
        (self)().into()
    }
}

#[cfg(test)]
mod tests {
    use futures::Future;
    use mz_repr::Timestamp;

    use super::*;

    // These test methods are meant to be used by tests for timestamp oracle
    // implementations.

    pub async fn timestamp_oracle_impl_test<
        C: TimestampOracle<Timestamp>,
        F: Future<Output = C>,
        NewFn: FnMut(String, NowFn, Timestamp) -> F,
    >(
        mut new_fn: NewFn,
    ) -> Result<(), anyhow::Error> {
        // Normally, these could all be separate test methods but we bundle them
        // all together so that it's easier to call this one test method from
        // the implementation tests.

        // Timestamp::MIN as initial timestamp
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);

        // Timestamp::MAX as initial timestamp
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MAX).await;
        assert_eq!(oracle.read_ts().await, Timestamp::MAX);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MAX);

        // Timestamp::MAX-1 from NowFn. We have to step back by one, otherwise
        // `write_ts` can't determine the "advance_to" timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let mut oracle = new_fn(
            timeline,
            NowFn::from(|| Timestamp::MAX.step_back().expect("known to work").into()),
            Timestamp::MIN,
        )
        .await;
        // At first, read_ts and peek_write_ts stay where they are.
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
        assert_eq!(
            oracle.write_ts().await.timestamp,
            Timestamp::MAX.step_back().expect("known to work")
        );
        // Now peek_write_ts jump to MAX-1 but read_ts stays.
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(
            oracle.peek_write_ts().await,
            Timestamp::MAX.step_back().expect("known to work")
        );

        // Repeated write_ts calls advance the timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());

        // Repeated peek_write_ts calls _DON'T_ advance the timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.peek_write_ts().await, 0u64.into());
        assert_eq!(oracle.peek_write_ts().await, 0u64.into());

        // Interesting scenarios around apply_write, from its rustdoc.
        //
        // Scenario #1:
        // input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
        let timeline = uuid::Uuid::new_v4().to_string();
        let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 10u64.into()).await;
        oracle.apply_write(5u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 10u64.into());
        assert_eq!(oracle.read_ts().await, 10u64.into());

        // Scenario #2:
        // r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
        let timeline = uuid::Uuid::new_v4().to_string();
        let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
        // Have to bump the write_ts up manually:
        assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 3u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 4u64.into());
        oracle.apply_write(2u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 4u64.into());
        assert_eq!(oracle.read_ts().await, 2u64.into());

        // Scenario #3:
        // r_0 <= w_0 <= input -> r_1 = input and w_1 = input
        let timeline = uuid::Uuid::new_v4().to_string();
        let mut oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
        oracle.apply_write(2u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 2u64.into());
        assert_eq!(oracle.read_ts().await, 2u64.into());
        oracle.apply_write(4u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 4u64.into());
        assert_eq!(oracle.read_ts().await, 4u64.into());

        Ok(())
    }

    pub async fn shareable_timestamp_oracle_impl_test<F, NewFn>(
        mut new_fn: NewFn,
    ) -> Result<(), anyhow::Error>
    where
        F: Future<Output = Arc<dyn ShareableTimestampOracle<Timestamp> + Send + Sync>>,
        NewFn: FnMut(String, NowFn, Timestamp) -> F,
    {
        // Normally, these could all be separate test methods but we bundle them
        // all together so that it's easier to call this one test method from
        // the implementation tests.

        // Timestamp::MIN as initial timestamp
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);

        // Timestamp::MAX as initial timestamp
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MAX).await;
        assert_eq!(oracle.read_ts().await, Timestamp::MAX);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MAX);

        // Timestamp::MAX-1 from NowFn. We have to step back by one, otherwise
        // `write_ts` can't determine the "advance_to" timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(
            timeline,
            NowFn::from(|| Timestamp::MAX.step_back().expect("known to work").into()),
            Timestamp::MIN,
        )
        .await;
        // At first, read_ts and peek_write_ts stay where they are.
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(oracle.peek_write_ts().await, Timestamp::MIN);
        assert_eq!(
            oracle.write_ts().await.timestamp,
            Timestamp::MAX.step_back().expect("known to work")
        );
        // Now peek_write_ts jump to MAX-1 but read_ts stays.
        assert_eq!(oracle.read_ts().await, Timestamp::MIN);
        assert_eq!(
            oracle.peek_write_ts().await,
            Timestamp::MAX.step_back().expect("known to work")
        );

        // Repeated write_ts calls advance the timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());

        // Repeated peek_write_ts calls _DON'T_ advance the timestamp.
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), Timestamp::MIN).await;
        assert_eq!(oracle.peek_write_ts().await, 0u64.into());
        assert_eq!(oracle.peek_write_ts().await, 0u64.into());

        // Interesting scenarios around apply_write, from its rustdoc.
        //
        // Scenario #1:
        // input <= r_0 <= w_0 -> r_1 = r_0 and w_1 = w_0
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), 10u64.into()).await;
        oracle.apply_write(5u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 10u64.into());
        assert_eq!(oracle.read_ts().await, 10u64.into());

        // Scenario #2:
        // r_0 <= input <= w_0 -> r_1 = input and w_1 = w_0
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
        // Have to bump the write_ts up manually:
        assert_eq!(oracle.write_ts().await.timestamp, 1u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 2u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 3u64.into());
        assert_eq!(oracle.write_ts().await.timestamp, 4u64.into());
        oracle.apply_write(2u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 4u64.into());
        assert_eq!(oracle.read_ts().await, 2u64.into());

        // Scenario #3:
        // r_0 <= w_0 <= input -> r_1 = input and w_1 = input
        let timeline = uuid::Uuid::new_v4().to_string();
        let oracle = new_fn(timeline, NowFn::from(|| 0u64), 0u64.into()).await;
        oracle.apply_write(2u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 2u64.into());
        assert_eq!(oracle.read_ts().await, 2u64.into());
        oracle.apply_write(4u64.into()).await;
        assert_eq!(oracle.peek_write_ts().await, 4u64.into());
        assert_eq!(oracle.read_ts().await, 4u64.into());

        Ok(())
    }
}