jiff/tz/timezone.rs
1use crate::{
2 civil::DateTime,
3 error::{tz::timezone::Error as E, Error},
4 tz::{
5 ambiguous::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned},
6 offset::{Dst, Offset},
7 },
8 util::{array_str::ArrayStr, sync::Arc},
9 Timestamp, Zoned,
10};
11
12use crate::tz::posix::PosixTimeZoneOwned;
13
14use self::repr::Repr;
15
16/// A representation of a [time zone].
17///
18/// A time zone is a set of rules for determining the civil time, via an offset
19/// from UTC, in a particular geographic region. In many cases, the offset
20/// in a particular time zone can vary over the course of a year through
21/// transitions into and out of [daylight saving time].
22///
23/// A `TimeZone` can be one of three possible representations:
24///
25/// * An identifier from the [IANA Time Zone Database] and the rules associated
26/// with that identifier.
27/// * A fixed offset where there are never any time zone transitions.
28/// * A [POSIX TZ] string that specifies a standard offset and an optional
29/// daylight saving time offset along with a rule for when DST is in effect.
30/// The rule applies for every year. Since POSIX TZ strings cannot capture the
31/// full complexity of time zone rules, they generally should not be used.
32///
33/// The most practical and useful representation is an IANA time zone. Namely,
34/// it enjoys broad support and its database is regularly updated to reflect
35/// real changes in time zone rules throughout the world. On Unix systems,
36/// the time zone database is typically found at `/usr/share/zoneinfo`. For
37/// more information on how Jiff interacts with The Time Zone Database, see
38/// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
39///
40/// In typical usage, users of Jiff shouldn't need to reference a `TimeZone`
41/// directly. Instead, there are convenience APIs on datetime types that accept
42/// IANA time zone identifiers and do automatic database lookups for you. For
43/// example, to convert a timestamp to a zone aware datetime:
44///
45/// ```
46/// use jiff::Timestamp;
47///
48/// let ts = Timestamp::from_second(1_456_789_123)?;
49/// let zdt = ts.in_tz("America/New_York")?;
50/// assert_eq!(zdt.to_string(), "2016-02-29T18:38:43-05:00[America/New_York]");
51///
52/// # Ok::<(), Box<dyn std::error::Error>>(())
53/// ```
54///
55/// Or to convert a civil datetime to a zoned datetime corresponding to a
56/// precise instant in time:
57///
58/// ```
59/// use jiff::civil::date;
60///
61/// let dt = date(2024, 7, 15).at(21, 27, 0, 0);
62/// let zdt = dt.in_tz("America/New_York")?;
63/// assert_eq!(zdt.to_string(), "2024-07-15T21:27:00-04:00[America/New_York]");
64///
65/// # Ok::<(), Box<dyn std::error::Error>>(())
66/// ```
67///
68/// Or even converted a zoned datetime from one time zone to another:
69///
70/// ```
71/// use jiff::civil::date;
72///
73/// let dt = date(2024, 7, 15).at(21, 27, 0, 0);
74/// let zdt1 = dt.in_tz("America/New_York")?;
75/// let zdt2 = zdt1.in_tz("Israel")?;
76/// assert_eq!(zdt2.to_string(), "2024-07-16T04:27:00+03:00[Israel]");
77///
78/// # Ok::<(), Box<dyn std::error::Error>>(())
79/// ```
80///
81/// # The system time zone
82///
83/// The system time zone can be retrieved via [`TimeZone::system`]. If it
84/// couldn't be detected or if the `tz-system` crate feature is not enabled,
85/// then [`TimeZone::unknown`] is returned. `TimeZone::system` is what's used
86/// internally for retrieving the current zoned datetime via [`Zoned::now`].
87///
88/// While there is no platform independent way to detect your system's
89/// "default" time zone, Jiff employs best-effort heuristics to determine it.
90/// (For example, by examining `/etc/localtime` on Unix systems or the `TZ`
91/// environment variable.) When the heuristics fail, Jiff will emit a `WARN`
92/// level log. It can be viewed by installing a `log` compatible logger, such
93/// as [`env_logger`].
94///
95/// # Custom time zones
96///
97/// At present, Jiff doesn't provide any APIs for manually constructing a
98/// custom time zone. However, [`TimeZone::tzif`] is provided for reading
99/// any valid TZif formatted data, as specified by [RFC 8536]. This provides
100/// an interoperable way of utilizing custom time zone rules.
101///
102/// # A `TimeZone` is immutable
103///
104/// Once a `TimeZone` is created, it is immutable. That is, its underlying
105/// time zone transition rules will never change. This is true for system time
106/// zones or even if the IANA Time Zone Database it was loaded from changes on
107/// disk. The only way such changes can be observed is by re-requesting the
108/// `TimeZone` from a `TimeZoneDatabase`. (Or, in the case of the system time
109/// zone, by calling `TimeZone::system`.)
110///
111/// # A `TimeZone` is cheap to clone
112///
113/// A `TimeZone` can be cheaply cloned. It uses automatic reference counting
114/// internally. When `alloc` is disabled, cloning a `TimeZone` is still cheap
115/// because POSIX time zones and TZif time zones are unsupported. Therefore,
116/// cloning a time zone does a deep copy (since automatic reference counting is
117/// not available), but the data being copied is small.
118///
119/// # Time zone equality
120///
121/// `TimeZone` provides an imperfect notion of equality. That is, when two time
122/// zones are equal, then it is guaranteed for them to have the same rules.
123/// However, two time zones may compare unequal and yet still have the same
124/// rules.
125///
126/// The equality semantics are as follows:
127///
128/// * Two fixed offset time zones are equal when their offsets are equal.
129/// * Two POSIX time zones are equal when their original rule strings are
130/// byte-for-byte identical.
131/// * Two IANA time zones are equal when their identifiers are equal _and_
132/// checksums of their rules are equal.
133/// * In all other cases, time zones are unequal.
134///
135/// Time zone equality is, for example, used in APIs like [`Zoned::since`]
136/// when asking for spans with calendar units. Namely, since days can be of
137/// different lengths in different time zones, `Zoned::since` will return an
138/// error when the two zoned datetimes are in different time zones and when
139/// the caller requests units greater than hours.
140///
141/// # Dealing with ambiguity
142///
143/// The principal job of a `TimeZone` is to provide two different
144/// transformations:
145///
146/// * A conversion from a [`Timestamp`] to a civil time (also known as local,
147/// naive or plain time). This conversion is always unambiguous. That is,
148/// there is always precisely one representation of civil time for any
149/// particular instant in time for a particular time zone.
150/// * A conversion from a [`civil::DateTime`](crate::civil::DateTime) to an
151/// instant in time. This conversion is sometimes ambiguous in that a civil
152/// time might have either never appear on the clocks in a particular
153/// time zone (a gap), or in that the civil time may have been repeated on the
154/// clocks in a particular time zone (a fold). Typically, a transition to
155/// daylight saving time is a gap, while a transition out of daylight saving
156/// time is a fold.
157///
158/// The timestamp-to-civil time conversion is done via
159/// [`TimeZone::to_datetime`], or its lower level counterpart,
160/// [`TimeZone::to_offset`]. The civil time-to-timestamp conversion is done
161/// via one of the following routines:
162///
163/// * [`TimeZone::to_zoned`] conveniently returns a [`Zoned`] and automatically
164/// uses the
165/// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
166/// strategy if the given civil datetime is ambiguous in the time zone.
167/// * [`TimeZone::to_ambiguous_zoned`] returns a potentially ambiguous
168/// zoned datetime, [`AmbiguousZoned`], and provides fine-grained control over
169/// how to resolve ambiguity, if it occurs.
170/// * [`TimeZone::to_timestamp`] is like `TimeZone::to_zoned`, but returns
171/// a [`Timestamp`] instead.
172/// * [`TimeZone::to_ambiguous_timestamp`] is like
173/// `TimeZone::to_ambiguous_zoned`, but returns an [`AmbiguousTimestamp`]
174/// instead.
175///
176/// Here is an example where we explore the different disambiguation strategies
177/// for a fold in time, where in this case, the 1 o'clock hour is repeated:
178///
179/// ```
180/// use jiff::{civil::date, tz::TimeZone};
181///
182/// let tz = TimeZone::get("America/New_York")?;
183/// let dt = date(2024, 11, 3).at(1, 30, 0, 0);
184/// // It's ambiguous, so asking for an unambiguous instant presents an error!
185/// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
186/// // Gives you the earlier time in a fold, i.e., before DST ends:
187/// assert_eq!(
188/// tz.to_ambiguous_zoned(dt).earlier()?.to_string(),
189/// "2024-11-03T01:30:00-04:00[America/New_York]",
190/// );
191/// // Gives you the later time in a fold, i.e., after DST ends.
192/// // Notice the offset change from the previous example!
193/// assert_eq!(
194/// tz.to_ambiguous_zoned(dt).later()?.to_string(),
195/// "2024-11-03T01:30:00-05:00[America/New_York]",
196/// );
197/// // "Just give me something reasonable"
198/// assert_eq!(
199/// tz.to_ambiguous_zoned(dt).compatible()?.to_string(),
200/// "2024-11-03T01:30:00-04:00[America/New_York]",
201/// );
202///
203/// # Ok::<(), Box<dyn std::error::Error>>(())
204/// ```
205///
206/// # Serde integration
207///
208/// At present, a `TimeZone` does not implement Serde's `Serialize` or
209/// `Deserialize` traits directly. Nor does it implement `std::fmt::Display`
210/// or `std::str::FromStr`. The reason for this is that it's not totally
211/// clear if there is one single obvious behavior. Moreover, some `TimeZone`
212/// values do not have an obvious succinct serialized representation. (For
213/// example, when `/etc/localtime` on a Unix system is your system's time zone,
214/// and it isn't a symlink to a TZif file in `/usr/share/zoneinfo`. In which
215/// case, an IANA time zone identifier cannot easily be deduced by Jiff.)
216///
217/// Instead, Jiff offers helpers for use with Serde's [`with` attribute] via
218/// the [`fmt::serde`](crate::fmt::serde) module:
219///
220/// ```
221/// use jiff::tz::TimeZone;
222///
223/// #[derive(Debug, serde::Deserialize, serde::Serialize)]
224/// struct Record {
225/// #[serde(with = "jiff::fmt::serde::tz::optional")]
226/// tz: Option<TimeZone>,
227/// }
228///
229/// let json = r#"{"tz":"America/Nuuk"}"#;
230/// let got: Record = serde_json::from_str(&json)?;
231/// assert_eq!(got.tz, Some(TimeZone::get("America/Nuuk")?));
232/// assert_eq!(serde_json::to_string(&got)?, json);
233///
234/// # Ok::<(), Box<dyn std::error::Error>>(())
235/// ```
236///
237/// Alternatively, you may use the
238/// [`fmt::temporal::DateTimeParser::parse_time_zone`](crate::fmt::temporal::DateTimeParser::parse_time_zone)
239/// or
240/// [`fmt::temporal::DateTimePrinter::print_time_zone`](crate::fmt::temporal::DateTimePrinter::print_time_zone)
241/// routines to parse or print `TimeZone` values without using Serde.
242///
243/// [time zone]: https://en.wikipedia.org/wiki/Time_zone
244/// [daylight saving time]: https://en.wikipedia.org/wiki/Daylight_saving_time
245/// [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database
246/// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
247/// [`env_logger`]: https://docs.rs/env_logger
248/// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
249/// [`with` attribute]: https://serde.rs/field-attrs.html#with
250#[derive(Clone, Eq, PartialEq)]
251pub struct TimeZone {
252 repr: Repr,
253}
254
255impl TimeZone {
256 /// The UTC time zone.
257 ///
258 /// The offset of this time is `0` and never has any transitions.
259 pub const UTC: TimeZone = TimeZone { repr: Repr::utc() };
260
261 /// Returns the system configured time zone, if available.
262 ///
263 /// Detection of a system's default time zone is generally heuristic
264 /// based and platform specific.
265 ///
266 /// If callers need to know whether discovery of the system time zone
267 /// failed, then use [`TimeZone::try_system`].
268 ///
269 /// # Fallback behavior
270 ///
271 /// If the system's default time zone could not be determined, or if
272 /// the `tz-system` crate feature is not enabled, then this returns
273 /// [`TimeZone::unknown`]. A `WARN` level log will also be emitted with
274 /// a message explaining why time zone detection failed. The fallback to
275 /// an unknown time zone is a practical trade-off, is what most other
276 /// systems tend to do and is also recommended by [relevant standards such
277 /// as freedesktop.org][freedesktop-org-localtime].
278 ///
279 /// An unknown time zone _behaves_ like [`TimeZone::UTC`], but will
280 /// print as `Etc/Unknown` when converting a `Zoned` to a string.
281 ///
282 /// If you would like to fall back to UTC instead of
283 /// the special "unknown" time zone, then you can do
284 /// `TimeZone::try_system().unwrap_or(TimeZone::UTC)`.
285 ///
286 /// # Platform behavior
287 ///
288 /// This section is a "best effort" explanation of how the time zone is
289 /// detected on supported platforms. The behavior is subject to change.
290 ///
291 /// On all platforms, the `TZ` environment variable overrides any other
292 /// heuristic, and provides a way for end users to set the time zone for
293 /// specific use cases. In general, Jiff respects the [POSIX TZ] rules.
294 /// Here are some examples:
295 ///
296 /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone
297 /// Database Identifier.
298 /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone
299 /// by providing a file path to a TZif file directly.
300 /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight
301 /// saving time transition rule.
302 ///
303 /// When `TZ` is set to an invalid value, Jiff uses the fallback behavior
304 /// described above.
305 ///
306 /// Otherwise, when `TZ` isn't set, then:
307 ///
308 /// On Unix non-Android systems, this inspects `/etc/localtime`. If it's
309 /// a symbolic link to an entry in `/usr/share/zoneinfo`, then the suffix
310 /// is considered an IANA Time Zone Database identifier. Otherwise,
311 /// `/etc/localtime` is read as a TZif file directly.
312 ///
313 /// On Android systems, this inspects the `persist.sys.timezone` property.
314 ///
315 /// On Windows, the system time zone is determined via
316 /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an
317 /// IANA Time Zone Database identifier via Unicode's
318 /// [CLDR XML data].
319 ///
320 /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html
321 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
322 /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation
323 /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml
324 #[inline]
325 pub fn system() -> TimeZone {
326 match TimeZone::try_system() {
327 Ok(tz) => tz,
328 Err(_err) => {
329 warn!(
330 "failed to get system time zone, \
331 falling back to `Etc/Unknown` \
332 (which behaves like UTC): {_err}",
333 );
334 TimeZone::unknown()
335 }
336 }
337 }
338
339 /// Returns the system configured time zone, if available.
340 ///
341 /// If the system's default time zone could not be determined, or if the
342 /// `tz-system` crate feature is not enabled, then this returns an error.
343 ///
344 /// Detection of a system's default time zone is generally heuristic
345 /// based and platform specific.
346 ///
347 /// Note that callers should generally prefer using [`TimeZone::system`].
348 /// If a system time zone could not be found, then it falls
349 /// back to [`TimeZone::UTC`] automatically. This is often
350 /// what is recommended by [relevant standards such as
351 /// freedesktop.org][freedesktop-org-localtime]. Conversely, this routine
352 /// is useful if detection of a system's default time zone is critical.
353 ///
354 /// # Platform behavior
355 ///
356 /// This section is a "best effort" explanation of how the time zone is
357 /// detected on supported platforms. The behavior is subject to change.
358 ///
359 /// On all platforms, the `TZ` environment variable overrides any other
360 /// heuristic, and provides a way for end users to set the time zone for
361 /// specific use cases. In general, Jiff respects the [POSIX TZ] rules.
362 /// Here are some examples:
363 ///
364 /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone
365 /// Database Identifier.
366 /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone
367 /// by providing a file path to a TZif file directly.
368 /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight
369 /// saving time transition rule.
370 ///
371 /// When `TZ` is set to an invalid value, then this routine returns an
372 /// error.
373 ///
374 /// Otherwise, when `TZ` isn't set, then:
375 ///
376 /// On Unix systems, this inspects `/etc/localtime`. If it's a symbolic
377 /// link to an entry in `/usr/share/zoneinfo`, then the suffix is
378 /// considered an IANA Time Zone Database identifier. Otherwise,
379 /// `/etc/localtime` is read as a TZif file directly.
380 ///
381 /// On Windows, the system time zone is determined via
382 /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an
383 /// IANA Time Zone Database identifier via Unicode's
384 /// [CLDR XML data].
385 ///
386 /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html
387 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
388 /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation
389 /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml
390 #[inline]
391 pub fn try_system() -> Result<TimeZone, Error> {
392 #[cfg(not(feature = "tz-system"))]
393 {
394 Err(Error::from(crate::error::CrateFeatureError::TzSystem)
395 .context(E::FailedSystem))
396 }
397 #[cfg(feature = "tz-system")]
398 {
399 crate::tz::system::get(crate::tz::db())
400 }
401 }
402
403 /// A convenience function for performing a time zone database lookup for
404 /// the given time zone identifier. It uses the default global time zone
405 /// database via [`tz::db()`](crate::tz::db()).
406 ///
407 /// It is guaranteed that if the given time zone name is case insensitively
408 /// equivalent to `UTC`, then the time zone returned will be equivalent to
409 /// `TimeZone::UTC`. Similarly for `Etc/Unknown` and `TimeZone::unknown()`.
410 ///
411 /// # Errors
412 ///
413 /// This returns an error if the given time zone identifier could not be
414 /// found in the default [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
415 ///
416 /// # Example
417 ///
418 /// ```
419 /// use jiff::{tz::TimeZone, Timestamp};
420 ///
421 /// let tz = TimeZone::get("Japan")?;
422 /// assert_eq!(
423 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
424 /// "1970-01-01T09:00:00",
425 /// );
426 ///
427 /// # Ok::<(), Box<dyn std::error::Error>>(())
428 /// ```
429 #[inline]
430 pub fn get(time_zone_name: &str) -> Result<TimeZone, Error> {
431 crate::tz::db().get(time_zone_name)
432 }
433
434 /// Returns a time zone with a fixed offset.
435 ///
436 /// A fixed offset will never have any transitions and won't follow any
437 /// particular time zone rules. In general, one should avoid using fixed
438 /// offset time zones unless you have a specific need for them. Otherwise,
439 /// IANA time zones via [`TimeZone::get`] should be preferred, as they
440 /// more accurately model the actual time zone transitions rules used in
441 /// practice.
442 ///
443 /// # Example
444 ///
445 /// ```
446 /// use jiff::{tz::{self, TimeZone}, Timestamp};
447 ///
448 /// let tz = TimeZone::fixed(tz::offset(10));
449 /// assert_eq!(
450 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
451 /// "1970-01-01T10:00:00",
452 /// );
453 ///
454 /// # Ok::<(), Box<dyn std::error::Error>>(())
455 /// ```
456 #[inline]
457 pub const fn fixed(offset: Offset) -> TimeZone {
458 // Not doing `offset == Offset::UTC` because of `const`.
459 if offset.seconds() == 0 {
460 return TimeZone::UTC;
461 }
462 let repr = Repr::fixed(offset);
463 TimeZone { repr }
464 }
465
466 /// Creates a time zone from a [POSIX TZ] rule string.
467 ///
468 /// A POSIX time zone provides a way to tersely define a single daylight
469 /// saving time transition rule (or none at all) that applies for all
470 /// years.
471 ///
472 /// Users should avoid using this kind of time zone unless there is a
473 /// specific need for it. Namely, POSIX time zones cannot capture the full
474 /// complexity of time zone transition rules in the real world. (See the
475 /// example below.)
476 ///
477 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
478 ///
479 /// # Errors
480 ///
481 /// This returns an error if the given POSIX time zone string is invalid.
482 ///
483 /// # Example
484 ///
485 /// This example demonstrates how a POSIX time zone may be historically
486 /// inaccurate:
487 ///
488 /// ```
489 /// use jiff::{civil::date, tz::TimeZone};
490 ///
491 /// // The tzdb entry for America/New_York.
492 /// let iana = TimeZone::get("America/New_York")?;
493 /// // The POSIX TZ string for New York DST that went into effect in 2007.
494 /// let posix = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0")?;
495 ///
496 /// // New York entered DST on April 2, 2006 at 2am:
497 /// let dt = date(2006, 4, 2).at(2, 0, 0, 0);
498 /// // The IANA tzdb entry correctly reports it as ambiguous:
499 /// assert!(iana.to_ambiguous_timestamp(dt).is_ambiguous());
500 /// // But the POSIX time zone does not:
501 /// assert!(!posix.to_ambiguous_timestamp(dt).is_ambiguous());
502 ///
503 /// # Ok::<(), Box<dyn std::error::Error>>(())
504 /// ```
505 #[cfg(feature = "alloc")]
506 pub fn posix(posix_tz_string: &str) -> Result<TimeZone, Error> {
507 let posix_tz = PosixTimeZoneOwned::parse(posix_tz_string)?;
508 Ok(TimeZone::from_posix_tz(posix_tz))
509 }
510
511 /// Creates a time zone from a POSIX tz. Expose so that other parts of Jiff
512 /// can create a `TimeZone` from a POSIX tz. (Kinda sloppy to be honest.)
513 #[cfg(feature = "alloc")]
514 pub(crate) fn from_posix_tz(posix: PosixTimeZoneOwned) -> TimeZone {
515 let repr = Repr::arc_posix(Arc::new(posix));
516 TimeZone { repr }
517 }
518
519 /// Creates a time zone from TZif binary data, whose format is specified
520 /// in [RFC 8536]. All versions of TZif (up through version 4) are
521 /// supported.
522 ///
523 /// This constructor is typically not used, and instead, one should rely
524 /// on time zone lookups via time zone identifiers with routines like
525 /// [`TimeZone::get`]. However, this constructor does provide one way
526 /// of using custom time zones with Jiff.
527 ///
528 /// The name given should be a IANA time zone database identifier.
529 ///
530 /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
531 ///
532 /// # Errors
533 ///
534 /// This returns an error if the given data was not recognized as valid
535 /// TZif.
536 #[cfg(feature = "alloc")]
537 pub fn tzif(name: &str, data: &[u8]) -> Result<TimeZone, Error> {
538 use alloc::string::ToString;
539
540 let name = name.to_string();
541 let tzif = crate::tz::tzif::Tzif::parse(Some(name), data)?;
542 let repr = Repr::arc_tzif(Arc::new(tzif));
543 Ok(TimeZone { repr })
544 }
545
546 /// Returns a `TimeZone` that is specifically marked as "unknown."
547 ///
548 /// This corresponds to the Unicode CLDR identifier `Etc/Unknown`, which
549 /// is guaranteed to never be a valid IANA time zone identifier (as of
550 /// the `2025a` release of tzdb).
551 ///
552 /// This type of `TimeZone` is used in circumstances where one wants to
553 /// signal that discovering a time zone failed for some reason, but that
554 /// execution can reasonably continue. For example, [`TimeZone::system`]
555 /// returns this type of time zone when the system time zone could not be
556 /// discovered.
557 ///
558 /// # Example
559 ///
560 /// Jiff permits an "unknown" time zone to losslessly be transmitted
561 /// through serialization:
562 ///
563 /// ```
564 /// use jiff::{civil::date, tz::TimeZone, Zoned};
565 ///
566 /// let tz = TimeZone::unknown();
567 /// let zdt = date(2025, 2, 1).at(17, 0, 0, 0).to_zoned(tz)?;
568 /// assert_eq!(zdt.to_string(), "2025-02-01T17:00:00Z[Etc/Unknown]");
569 /// let got: Zoned = "2025-02-01T17:00:00Z[Etc/Unknown]".parse()?;
570 /// assert_eq!(got, zdt);
571 ///
572 /// # Ok::<(), Box<dyn std::error::Error>>(())
573 /// ```
574 ///
575 /// Note that not all systems support this. Some systems will reject
576 /// `Etc/Unknown` because it is not a valid IANA time zone identifier and
577 /// does not have an entry in the IANA time zone database. However, Jiff
578 /// takes this approach because it surfaces an error condition in detecting
579 /// the end user's time zone. Callers not wanting an "unknown" time zone
580 /// can use `TimeZone::try_system().unwrap_or(TimeZone::UTC)` instead of
581 /// `TimeZone::system`. (Where the latter falls back to the "unknown" time
582 /// zone when a system configured time zone could not be found.)
583 pub const fn unknown() -> TimeZone {
584 let repr = Repr::unknown();
585 TimeZone { repr }
586 }
587
588 /// This creates an unnamed TZif-backed `TimeZone`.
589 ///
590 /// At present, the only way for an unnamed TZif-backed `TimeZone` to be
591 /// created is when the system time zone has no identifiable name. For
592 /// example, when `/etc/localtime` is hard-linked to a TZif file instead
593 /// of being symlinked. In this case, there is no cheap and unambiguous
594 /// way to determine the time zone name. So we just let it be unnamed.
595 /// Since this is the only such case, and hopefully will only ever be the
596 /// only such case, we consider such unnamed TZif-back `TimeZone` values
597 /// as being the "system" time zone.
598 ///
599 /// When this is used to construct a `TimeZone`, the `TimeZone::name`
600 /// method will be "Local". This is... pretty unfortunate. I'm not sure
601 /// what else to do other than to make `TimeZone::name` return an
602 /// `Option<&str>`. But... we use it in a bunch of places and it just
603 /// seems bad for a time zone to not have a name.
604 ///
605 /// OK, because of the above, I renamed `TimeZone::name` to
606 /// `TimeZone::diagnostic_name`. This should make it clearer that you can't
607 /// really use the name to do anything interesting. This also makes more
608 /// sense for POSIX TZ strings too.
609 ///
610 /// In any case, this routine stays unexported because I don't want TZif
611 /// backed `TimeZone` values to proliferate. If you have a legitimate use
612 /// case otherwise, please file an issue. It will require API design.
613 ///
614 /// # Errors
615 ///
616 /// This returns an error if the given TZif data is invalid.
617 #[cfg(feature = "tz-system")]
618 pub(crate) fn tzif_system(data: &[u8]) -> Result<TimeZone, Error> {
619 let tzif = crate::tz::tzif::Tzif::parse(None, data)?;
620 let repr = Repr::arc_tzif(Arc::new(tzif));
621 Ok(TimeZone { repr })
622 }
623
624 #[inline]
625 pub(crate) fn diagnostic_name(&self) -> DiagnosticName<'_> {
626 DiagnosticName(self)
627 }
628
629 /// Returns true if and only if this `TimeZone` can be succinctly
630 /// serialized.
631 ///
632 /// Basically, this is only `false` when this `TimeZone` was created from
633 /// a `/etc/localtime` for which a valid IANA time zone identifier could
634 /// not be extracted.
635 #[cfg(feature = "serde")]
636 #[inline]
637 pub(crate) fn has_succinct_serialization(&self) -> bool {
638 repr::each! {
639 &self.repr,
640 UTC => true,
641 UNKNOWN => true,
642 FIXED(_offset) => true,
643 STATIC_TZIF(tzif) => tzif.name().is_some(),
644 ARC_TZIF(tzif) => tzif.name().is_some(),
645 ARC_POSIX(_posix) => true,
646 }
647 }
648
649 /// When this time zone was loaded from an IANA time zone database entry,
650 /// then this returns the canonicalized name for that time zone.
651 ///
652 /// # Example
653 ///
654 /// ```
655 /// use jiff::tz::TimeZone;
656 ///
657 /// let tz = TimeZone::get("america/NEW_YORK")?;
658 /// assert_eq!(tz.iana_name(), Some("America/New_York"));
659 ///
660 /// # Ok::<(), Box<dyn std::error::Error>>(())
661 /// ```
662 #[inline]
663 pub fn iana_name(&self) -> Option<&str> {
664 repr::each! {
665 &self.repr,
666 UTC => Some("UTC"),
667 // Note that while `Etc/Unknown` looks like an IANA time zone
668 // identifier, it is specifically and explicitly NOT an IANA time
669 // zone identifier. So we do not return it here if we have an
670 // unknown time zone identifier.
671 UNKNOWN => None,
672 FIXED(_offset) => None,
673 STATIC_TZIF(tzif) => tzif.name(),
674 ARC_TZIF(tzif) => tzif.name(),
675 ARC_POSIX(_posix) => None,
676 }
677 }
678
679 /// Returns true if and only if this time zone is unknown.
680 ///
681 /// This has the special internal identifier of `Etc/Unknown`, and this
682 /// is what will be used when converting a `Zoned` to a string.
683 ///
684 /// Note that while `Etc/Unknown` looks like an IANA time zone identifier,
685 /// it is specifically and explicitly not one. It is reserved and is
686 /// guaranteed to never be an IANA time zone identifier.
687 ///
688 /// An unknown time zone can be created via [`TimeZone::unknown`]. It is
689 /// also returned by [`TimeZone::system`] when a system configured time
690 /// zone could not be found.
691 ///
692 /// # Example
693 ///
694 /// ```
695 /// use jiff::tz::TimeZone;
696 ///
697 /// let tz = TimeZone::unknown();
698 /// assert_eq!(tz.iana_name(), None);
699 /// assert!(tz.is_unknown());
700 /// ```
701 #[inline]
702 pub fn is_unknown(&self) -> bool {
703 self.repr.is_unknown()
704 }
705
706 /// When this time zone is a POSIX time zone, return it.
707 ///
708 /// This doesn't attempt to convert other time zones that are representable
709 /// as POSIX time zones to POSIX time zones (e.g., fixed offset time
710 /// zones). Instead, this only returns something when the actual
711 /// representation of the time zone is a POSIX time zone.
712 #[inline]
713 pub(crate) fn posix_tz(&self) -> Option<&PosixTimeZoneOwned> {
714 repr::each! {
715 &self.repr,
716 UTC => None,
717 UNKNOWN => None,
718 FIXED(_offset) => None,
719 STATIC_TZIF(_tzif) => None,
720 ARC_TZIF(_tzif) => None,
721 ARC_POSIX(posix) => Some(posix),
722 }
723 }
724
725 /// Returns the civil datetime corresponding to the given timestamp in this
726 /// time zone.
727 ///
728 /// This operation is always unambiguous. That is, for any instant in time
729 /// supported by Jiff (that is, a `Timestamp`), there is always precisely
730 /// one civil datetime corresponding to that instant.
731 ///
732 /// Note that this is considered a lower level routine. Consider working
733 /// with zoned datetimes instead, and use [`Zoned::datetime`] to get its
734 /// civil time if necessary.
735 ///
736 /// # Example
737 ///
738 /// ```
739 /// use jiff::{tz::TimeZone, Timestamp};
740 ///
741 /// let tz = TimeZone::get("Europe/Rome")?;
742 /// assert_eq!(
743 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
744 /// "1970-01-01T01:00:00",
745 /// );
746 ///
747 /// # Ok::<(), Box<dyn std::error::Error>>(())
748 /// ```
749 ///
750 /// As mentioned above, consider using `Zoned` instead:
751 ///
752 /// ```
753 /// use jiff::Timestamp;
754 ///
755 /// let zdt = Timestamp::UNIX_EPOCH.in_tz("Europe/Rome")?;
756 /// assert_eq!(zdt.datetime().to_string(), "1970-01-01T01:00:00");
757 ///
758 /// # Ok::<(), Box<dyn std::error::Error>>(())
759 /// ```
760 #[inline]
761 pub fn to_datetime(&self, timestamp: Timestamp) -> DateTime {
762 self.to_offset(timestamp).to_datetime(timestamp)
763 }
764
765 /// Returns the offset corresponding to the given timestamp in this time
766 /// zone.
767 ///
768 /// This operation is always unambiguous. That is, for any instant in time
769 /// supported by Jiff (that is, a `Timestamp`), there is always precisely
770 /// one offset corresponding to that instant.
771 ///
772 /// Given an offset, one can use APIs like [`Offset::to_datetime`] to
773 /// create a civil datetime from a timestamp.
774 ///
775 /// This also returns whether this timestamp is considered to be in
776 /// "daylight saving time," as well as the abbreviation for the time zone
777 /// at this time.
778 ///
779 /// # Example
780 ///
781 /// ```
782 /// use jiff::{tz::{self, TimeZone}, Timestamp};
783 ///
784 /// let tz = TimeZone::get("America/New_York")?;
785 ///
786 /// // A timestamp in DST in New York.
787 /// let ts = Timestamp::from_second(1_720_493_204)?;
788 /// let offset = tz.to_offset(ts);
789 /// assert_eq!(offset, tz::offset(-4));
790 /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-07-08T22:46:44");
791 ///
792 /// // A timestamp *not* in DST in New York.
793 /// let ts = Timestamp::from_second(1_704_941_204)?;
794 /// let offset = tz.to_offset(ts);
795 /// assert_eq!(offset, tz::offset(-5));
796 /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-01-10T21:46:44");
797 ///
798 /// # Ok::<(), Box<dyn std::error::Error>>(())
799 /// ```
800 #[inline]
801 pub fn to_offset(&self, timestamp: Timestamp) -> Offset {
802 repr::each! {
803 &self.repr,
804 UTC => Offset::UTC,
805 UNKNOWN => Offset::UTC,
806 FIXED(offset) => offset,
807 STATIC_TZIF(tzif) => tzif.to_offset(timestamp),
808 ARC_TZIF(tzif) => tzif.to_offset(timestamp),
809 ARC_POSIX(posix) => posix.to_offset(timestamp),
810 }
811 }
812
813 /// Returns the offset information corresponding to the given timestamp in
814 /// this time zone. This includes the offset along with daylight saving
815 /// time status and a time zone abbreviation.
816 ///
817 /// This is like [`TimeZone::to_offset`], but returns the aforementioned
818 /// extra data in addition to the offset. This data may, in some cases, be
819 /// more expensive to compute.
820 ///
821 /// # Example
822 ///
823 /// ```
824 /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp};
825 ///
826 /// let tz = TimeZone::get("America/New_York")?;
827 ///
828 /// // A timestamp in DST in New York.
829 /// let ts = Timestamp::from_second(1_720_493_204)?;
830 /// let info = tz.to_offset_info(ts);
831 /// assert_eq!(info.offset(), tz::offset(-4));
832 /// assert_eq!(info.dst(), Dst::Yes);
833 /// assert_eq!(info.abbreviation(), "EDT");
834 /// assert_eq!(
835 /// info.offset().to_datetime(ts).to_string(),
836 /// "2024-07-08T22:46:44",
837 /// );
838 ///
839 /// // A timestamp *not* in DST in New York.
840 /// let ts = Timestamp::from_second(1_704_941_204)?;
841 /// let info = tz.to_offset_info(ts);
842 /// assert_eq!(info.offset(), tz::offset(-5));
843 /// assert_eq!(info.dst(), Dst::No);
844 /// assert_eq!(info.abbreviation(), "EST");
845 /// assert_eq!(
846 /// info.offset().to_datetime(ts).to_string(),
847 /// "2024-01-10T21:46:44",
848 /// );
849 ///
850 /// # Ok::<(), Box<dyn std::error::Error>>(())
851 /// ```
852 #[inline]
853 pub fn to_offset_info<'t>(
854 &'t self,
855 timestamp: Timestamp,
856 ) -> TimeZoneOffsetInfo<'t> {
857 repr::each! {
858 &self.repr,
859 UTC => TimeZoneOffsetInfo {
860 offset: Offset::UTC,
861 dst: Dst::No,
862 abbreviation: TimeZoneAbbreviation::Borrowed("UTC"),
863 },
864 UNKNOWN => TimeZoneOffsetInfo {
865 offset: Offset::UTC,
866 dst: Dst::No,
867 // It'd be kinda nice if this were just `ERR` to
868 // indicate an error, but I can't find any precedent
869 // for that. And CLDR says `Etc/Unknown` should behave
870 // like UTC, so... I guess we use UTC here.
871 abbreviation: TimeZoneAbbreviation::Borrowed("UTC"),
872 },
873 FIXED(offset) => {
874 let abbreviation =
875 TimeZoneAbbreviation::Owned(offset.to_array_str());
876 TimeZoneOffsetInfo {
877 offset,
878 dst: Dst::No,
879 abbreviation,
880 }
881 },
882 STATIC_TZIF(tzif) => tzif.to_offset_info(timestamp),
883 ARC_TZIF(tzif) => tzif.to_offset_info(timestamp),
884 ARC_POSIX(posix) => posix.to_offset_info(timestamp),
885 }
886 }
887
888 /// If this time zone is a fixed offset, then this returns the offset.
889 /// If this time zone is not a fixed offset, then an error is returned.
890 ///
891 /// If you just need an offset for a given timestamp, then you can use
892 /// [`TimeZone::to_offset`]. Or, if you need an offset for a civil
893 /// datetime, then you can use [`TimeZone::to_ambiguous_timestamp`] or
894 /// [`TimeZone::to_ambiguous_zoned`], although the result may be ambiguous.
895 ///
896 /// Generally, this routine is useful when you need to know whether the
897 /// time zone is fixed, and you want to get the offset without having to
898 /// specify a timestamp. This is sometimes required for interoperating with
899 /// other datetime systems that need to distinguish between time zones that
900 /// are fixed and time zones that are based on rules such as those found in
901 /// the IANA time zone database.
902 ///
903 /// # Example
904 ///
905 /// ```
906 /// use jiff::tz::{Offset, TimeZone};
907 ///
908 /// let tz = TimeZone::get("America/New_York")?;
909 /// // A named time zone is not a fixed offset
910 /// // and so cannot be converted to an offset
911 /// // without a timestamp or civil datetime.
912 /// assert_eq!(
913 /// tz.to_fixed_offset().unwrap_err().to_string(),
914 /// "cannot convert non-fixed IANA time zone \
915 /// to offset without a timestamp or civil datetime",
916 /// );
917 ///
918 /// let tz = TimeZone::UTC;
919 /// // UTC is a fixed offset and so can be converted
920 /// // without a timestamp.
921 /// assert_eq!(tz.to_fixed_offset()?, Offset::UTC);
922 ///
923 /// // And of course, creating a time zone from a
924 /// // fixed offset results in a fixed offset time
925 /// // zone too:
926 /// let tz = TimeZone::fixed(jiff::tz::offset(-10));
927 /// assert_eq!(tz.to_fixed_offset()?, jiff::tz::offset(-10));
928 ///
929 /// # Ok::<(), Box<dyn std::error::Error>>(())
930 /// ```
931 #[inline]
932 pub fn to_fixed_offset(&self) -> Result<Offset, Error> {
933 let mkerr = || {
934 Error::from(E::ConvertNonFixed { kind: self.kind_description() })
935 };
936 repr::each! {
937 &self.repr,
938 UTC => Ok(Offset::UTC),
939 UNKNOWN => Ok(Offset::UTC),
940 FIXED(offset) => Ok(offset),
941 STATIC_TZIF(_tzif) => Err(mkerr()),
942 ARC_TZIF(_tzif) => Err(mkerr()),
943 ARC_POSIX(_posix) => Err(mkerr()),
944 }
945 }
946
947 /// Converts a civil datetime to a [`Zoned`] in this time zone.
948 ///
949 /// The given civil datetime may be ambiguous in this time zone. A civil
950 /// datetime is ambiguous when either of the following occurs:
951 ///
952 /// * When the civil datetime falls into a "gap." That is, when there is a
953 /// jump forward in time where a span of time does not appear on the clocks
954 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
955 /// into daylight saving time.
956 /// * When the civil datetime falls into a "fold." That is, when there is
957 /// a jump backward in time where a span of time is _repeated_ on the
958 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
959 /// backward out of daylight saving time.
960 ///
961 /// This routine automatically resolves both of the above ambiguities via
962 /// the
963 /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
964 /// strategy. That in, the case of a gap, the time after the gap is used.
965 /// In the case of a fold, the first repetition of the clock time is used.
966 ///
967 /// # Example
968 ///
969 /// This example shows how disambiguation works:
970 ///
971 /// ```
972 /// use jiff::{civil::date, tz::TimeZone};
973 ///
974 /// let tz = TimeZone::get("America/New_York")?;
975 ///
976 /// // This demonstrates disambiguation behavior for a gap.
977 /// let zdt = tz.to_zoned(date(2024, 3, 10).at(2, 30, 0, 0))?;
978 /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]");
979 /// // This demonstrates disambiguation behavior for a fold.
980 /// // Notice the offset: the -04 corresponds to the time while
981 /// // still in DST. The second repetition of the 1 o'clock hour
982 /// // occurs outside of DST, in "standard" time, with the offset -5.
983 /// let zdt = tz.to_zoned(date(2024, 11, 3).at(1, 30, 0, 0))?;
984 /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]");
985 ///
986 /// # Ok::<(), Box<dyn std::error::Error>>(())
987 /// ```
988 #[inline]
989 pub fn to_zoned(&self, dt: DateTime) -> Result<Zoned, Error> {
990 self.to_ambiguous_zoned(dt).compatible()
991 }
992
993 /// Converts a civil datetime to a possibly ambiguous zoned datetime in
994 /// this time zone.
995 ///
996 /// The given civil datetime may be ambiguous in this time zone. A civil
997 /// datetime is ambiguous when either of the following occurs:
998 ///
999 /// * When the civil datetime falls into a "gap." That is, when there is a
1000 /// jump forward in time where a span of time does not appear on the clocks
1001 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1002 /// into daylight saving time.
1003 /// * When the civil datetime falls into a "fold." That is, when there is
1004 /// a jump backward in time where a span of time is _repeated_ on the
1005 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1006 /// backward out of daylight saving time.
1007 ///
1008 /// Unlike [`TimeZone::to_zoned`], this method does not do any automatic
1009 /// disambiguation. Instead, callers are expected to use the methods on
1010 /// [`AmbiguousZoned`] to resolve any ambiguity, if it occurs.
1011 ///
1012 /// # Example
1013 ///
1014 /// This example shows how to return an error when the civil datetime given
1015 /// is ambiguous:
1016 ///
1017 /// ```
1018 /// use jiff::{civil::date, tz::TimeZone};
1019 ///
1020 /// let tz = TimeZone::get("America/New_York")?;
1021 ///
1022 /// // This is not ambiguous:
1023 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1024 /// assert_eq!(
1025 /// tz.to_ambiguous_zoned(dt).unambiguous()?.to_string(),
1026 /// "2024-03-10T01:00:00-05:00[America/New_York]",
1027 /// );
1028 /// // But this is a gap, and thus ambiguous! So an error is returned.
1029 /// let dt = date(2024, 3, 10).at(2, 0, 0, 0);
1030 /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
1031 /// // And so is this, because it's a fold.
1032 /// let dt = date(2024, 11, 3).at(1, 0, 0, 0);
1033 /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
1034 ///
1035 /// # Ok::<(), Box<dyn std::error::Error>>(())
1036 /// ```
1037 #[inline]
1038 pub fn to_ambiguous_zoned(&self, dt: DateTime) -> AmbiguousZoned {
1039 self.clone().into_ambiguous_zoned(dt)
1040 }
1041
1042 /// Converts a civil datetime to a possibly ambiguous zoned datetime in
1043 /// this time zone, and does so by assuming ownership of this `TimeZone`.
1044 ///
1045 /// This is identical to [`TimeZone::to_ambiguous_zoned`], but it avoids
1046 /// a `TimeZone::clone()` call. (Which are cheap, but not completely free.)
1047 ///
1048 /// # Example
1049 ///
1050 /// This example shows how to create a `Zoned` value from a `TimeZone`
1051 /// and a `DateTime` without cloning the `TimeZone`:
1052 ///
1053 /// ```
1054 /// use jiff::{civil::date, tz::TimeZone};
1055 ///
1056 /// let tz = TimeZone::get("America/New_York")?;
1057 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1058 /// assert_eq!(
1059 /// tz.into_ambiguous_zoned(dt).unambiguous()?.to_string(),
1060 /// "2024-03-10T01:00:00-05:00[America/New_York]",
1061 /// );
1062 ///
1063 /// # Ok::<(), Box<dyn std::error::Error>>(())
1064 /// ```
1065 #[inline]
1066 pub fn into_ambiguous_zoned(self, dt: DateTime) -> AmbiguousZoned {
1067 self.to_ambiguous_timestamp(dt).into_ambiguous_zoned(self)
1068 }
1069
1070 /// Converts a civil datetime to a [`Timestamp`] in this time zone.
1071 ///
1072 /// The given civil datetime may be ambiguous in this time zone. A civil
1073 /// datetime is ambiguous when either of the following occurs:
1074 ///
1075 /// * When the civil datetime falls into a "gap." That is, when there is a
1076 /// jump forward in time where a span of time does not appear on the clocks
1077 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1078 /// into daylight saving time.
1079 /// * When the civil datetime falls into a "fold." That is, when there is
1080 /// a jump backward in time where a span of time is _repeated_ on the
1081 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1082 /// backward out of daylight saving time.
1083 ///
1084 /// This routine automatically resolves both of the above ambiguities via
1085 /// the
1086 /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
1087 /// strategy. That in, the case of a gap, the time after the gap is used.
1088 /// In the case of a fold, the first repetition of the clock time is used.
1089 ///
1090 /// This routine is identical to [`TimeZone::to_zoned`], except it returns
1091 /// a `Timestamp` instead of a zoned datetime. The benefit of this
1092 /// method is that it never requires cloning or consuming ownership of a
1093 /// `TimeZone`, and it doesn't require construction of `Zoned` which has
1094 /// a small but non-zero cost. (This is partially because a `Zoned` value
1095 /// contains a `TimeZone`, but of course, a `Timestamp` does not.)
1096 ///
1097 /// # Example
1098 ///
1099 /// This example shows how disambiguation works:
1100 ///
1101 /// ```
1102 /// use jiff::{civil::date, tz::TimeZone};
1103 ///
1104 /// let tz = TimeZone::get("America/New_York")?;
1105 ///
1106 /// // This demonstrates disambiguation behavior for a gap.
1107 /// let ts = tz.to_timestamp(date(2024, 3, 10).at(2, 30, 0, 0))?;
1108 /// assert_eq!(ts.to_string(), "2024-03-10T07:30:00Z");
1109 /// // This demonstrates disambiguation behavior for a fold.
1110 /// // Notice the offset: the -04 corresponds to the time while
1111 /// // still in DST. The second repetition of the 1 o'clock hour
1112 /// // occurs outside of DST, in "standard" time, with the offset -5.
1113 /// let ts = tz.to_timestamp(date(2024, 11, 3).at(1, 30, 0, 0))?;
1114 /// assert_eq!(ts.to_string(), "2024-11-03T05:30:00Z");
1115 ///
1116 /// # Ok::<(), Box<dyn std::error::Error>>(())
1117 /// ```
1118 #[inline]
1119 pub fn to_timestamp(&self, dt: DateTime) -> Result<Timestamp, Error> {
1120 self.to_ambiguous_timestamp(dt).compatible()
1121 }
1122
1123 /// Converts a civil datetime to a possibly ambiguous timestamp in
1124 /// this time zone.
1125 ///
1126 /// The given civil datetime may be ambiguous in this time zone. A civil
1127 /// datetime is ambiguous when either of the following occurs:
1128 ///
1129 /// * When the civil datetime falls into a "gap." That is, when there is a
1130 /// jump forward in time where a span of time does not appear on the clocks
1131 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1132 /// into daylight saving time.
1133 /// * When the civil datetime falls into a "fold." That is, when there is
1134 /// a jump backward in time where a span of time is _repeated_ on the
1135 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1136 /// backward out of daylight saving time.
1137 ///
1138 /// Unlike [`TimeZone::to_timestamp`], this method does not do any
1139 /// automatic disambiguation. Instead, callers are expected to use the
1140 /// methods on [`AmbiguousTimestamp`] to resolve any ambiguity, if it
1141 /// occurs.
1142 ///
1143 /// This routine is identical to [`TimeZone::to_ambiguous_zoned`], except
1144 /// it returns an `AmbiguousTimestamp` instead of a `AmbiguousZoned`. The
1145 /// benefit of this method is that it never requires cloning or consuming
1146 /// ownership of a `TimeZone`, and it doesn't require construction of
1147 /// `Zoned` which has a small but non-zero cost. (This is partially because
1148 /// a `Zoned` value contains a `TimeZone`, but of course, a `Timestamp`
1149 /// does not.)
1150 ///
1151 /// # Example
1152 ///
1153 /// This example shows how to return an error when the civil datetime given
1154 /// is ambiguous:
1155 ///
1156 /// ```
1157 /// use jiff::{civil::date, tz::TimeZone};
1158 ///
1159 /// let tz = TimeZone::get("America/New_York")?;
1160 ///
1161 /// // This is not ambiguous:
1162 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1163 /// assert_eq!(
1164 /// tz.to_ambiguous_timestamp(dt).unambiguous()?.to_string(),
1165 /// "2024-03-10T06:00:00Z",
1166 /// );
1167 /// // But this is a gap, and thus ambiguous! So an error is returned.
1168 /// let dt = date(2024, 3, 10).at(2, 0, 0, 0);
1169 /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err());
1170 /// // And so is this, because it's a fold.
1171 /// let dt = date(2024, 11, 3).at(1, 0, 0, 0);
1172 /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err());
1173 ///
1174 /// # Ok::<(), Box<dyn std::error::Error>>(())
1175 /// ```
1176 #[inline]
1177 pub fn to_ambiguous_timestamp(&self, dt: DateTime) -> AmbiguousTimestamp {
1178 let ambiguous_kind = repr::each! {
1179 &self.repr,
1180 UTC => AmbiguousOffset::Unambiguous { offset: Offset::UTC },
1181 UNKNOWN => AmbiguousOffset::Unambiguous { offset: Offset::UTC },
1182 FIXED(offset) => AmbiguousOffset::Unambiguous { offset },
1183 STATIC_TZIF(tzif) => tzif.to_ambiguous_kind(dt),
1184 ARC_TZIF(tzif) => tzif.to_ambiguous_kind(dt),
1185 ARC_POSIX(posix) => posix.to_ambiguous_kind(dt),
1186 };
1187 AmbiguousTimestamp::new(dt, ambiguous_kind)
1188 }
1189
1190 /// Returns an iterator of time zone transitions preceding the given
1191 /// timestamp. The iterator returned yields [`TimeZoneTransition`]
1192 /// elements.
1193 ///
1194 /// The order of the iterator returned moves backward through time. If
1195 /// there is a previous transition, then the timestamp of that transition
1196 /// is guaranteed to be strictly less than the timestamp given.
1197 ///
1198 /// This is a low level API that you generally shouldn't need. It's
1199 /// useful in cases where you need to know something about the specific
1200 /// instants at which time zone transitions occur. For example, an embedded
1201 /// device might need to be explicitly programmed with daylight saving
1202 /// time transitions. APIs like this enable callers to explore those
1203 /// transitions.
1204 ///
1205 /// A time zone transition refers to a specific point in time when the
1206 /// offset from UTC for a particular geographical region changes. This
1207 /// is usually a result of daylight saving time, but it can also occur
1208 /// when a geographic region changes its permanent offset from UTC.
1209 ///
1210 /// The iterator returned is not guaranteed to yield any elements. For
1211 /// example, this occurs with a fixed offset time zone. Logically, it
1212 /// would also be possible for the iterator to be infinite, except that
1213 /// eventually the timestamp would overflow Jiff's minimum timestamp
1214 /// value, at which point, iteration stops.
1215 ///
1216 /// # Example: time since the previous transition
1217 ///
1218 /// This example shows how much time has passed since the previous time
1219 /// zone transition:
1220 ///
1221 /// ```
1222 /// use jiff::{Unit, Zoned};
1223 ///
1224 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1225 /// let trans = now.time_zone().preceding(now.timestamp()).next().unwrap();
1226 /// let prev_at = trans.timestamp().to_zoned(now.time_zone().clone());
1227 /// let span = now.since((Unit::Year, &prev_at))?;
1228 /// assert_eq!(format!("{span:#}"), "1mo 27d 17h 25m");
1229 ///
1230 /// # Ok::<(), Box<dyn std::error::Error>>(())
1231 /// ```
1232 ///
1233 /// # Example: show the 5 previous time zone transitions
1234 ///
1235 /// This shows how to find the 5 preceding time zone transitions (from a
1236 /// particular datetime) for a particular time zone:
1237 ///
1238 /// ```
1239 /// use jiff::{tz::offset, Zoned};
1240 ///
1241 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1242 /// let transitions = now
1243 /// .time_zone()
1244 /// .preceding(now.timestamp())
1245 /// .take(5)
1246 /// .map(|t| (
1247 /// t.timestamp().to_zoned(now.time_zone().clone()),
1248 /// t.offset(),
1249 /// t.abbreviation().to_string(),
1250 /// ))
1251 /// .collect::<Vec<_>>();
1252 /// assert_eq!(transitions, vec![
1253 /// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1254 /// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1255 /// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1256 /// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1257 /// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1258 /// ]);
1259 ///
1260 /// # Ok::<(), Box<dyn std::error::Error>>(())
1261 /// ```
1262 #[inline]
1263 pub fn preceding<'t>(
1264 &'t self,
1265 timestamp: Timestamp,
1266 ) -> TimeZonePrecedingTransitions<'t> {
1267 TimeZonePrecedingTransitions { tz: self, cur: timestamp }
1268 }
1269
1270 /// Returns an iterator of time zone transitions following the given
1271 /// timestamp. The iterator returned yields [`TimeZoneTransition`]
1272 /// elements.
1273 ///
1274 /// The order of the iterator returned moves forward through time. If
1275 /// there is a following transition, then the timestamp of that transition
1276 /// is guaranteed to be strictly greater than the timestamp given.
1277 ///
1278 /// This is a low level API that you generally shouldn't need. It's
1279 /// useful in cases where you need to know something about the specific
1280 /// instants at which time zone transitions occur. For example, an embedded
1281 /// device might need to be explicitly programmed with daylight saving
1282 /// time transitions. APIs like this enable callers to explore those
1283 /// transitions.
1284 ///
1285 /// A time zone transition refers to a specific point in time when the
1286 /// offset from UTC for a particular geographical region changes. This
1287 /// is usually a result of daylight saving time, but it can also occur
1288 /// when a geographic region changes its permanent offset from UTC.
1289 ///
1290 /// The iterator returned is not guaranteed to yield any elements. For
1291 /// example, this occurs with a fixed offset time zone. Logically, it
1292 /// would also be possible for the iterator to be infinite, except that
1293 /// eventually the timestamp would overflow Jiff's maximum timestamp
1294 /// value, at which point, iteration stops.
1295 ///
1296 /// # Example: time until the next transition
1297 ///
1298 /// This example shows how much time is left until the next time zone
1299 /// transition:
1300 ///
1301 /// ```
1302 /// use jiff::{Unit, Zoned};
1303 ///
1304 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1305 /// let trans = now.time_zone().following(now.timestamp()).next().unwrap();
1306 /// let next_at = trans.timestamp().to_zoned(now.time_zone().clone());
1307 /// let span = now.until((Unit::Year, &next_at))?;
1308 /// assert_eq!(format!("{span:#}"), "2mo 8d 7h 35m");
1309 ///
1310 /// # Ok::<(), Box<dyn std::error::Error>>(())
1311 /// ```
1312 ///
1313 /// # Example: show the 5 next time zone transitions
1314 ///
1315 /// This shows how to find the 5 following time zone transitions (from a
1316 /// particular datetime) for a particular time zone:
1317 ///
1318 /// ```
1319 /// use jiff::{tz::offset, Zoned};
1320 ///
1321 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1322 /// let transitions = now
1323 /// .time_zone()
1324 /// .following(now.timestamp())
1325 /// .take(5)
1326 /// .map(|t| (
1327 /// t.timestamp().to_zoned(now.time_zone().clone()),
1328 /// t.offset(),
1329 /// t.abbreviation().to_string(),
1330 /// ))
1331 /// .collect::<Vec<_>>();
1332 /// assert_eq!(transitions, vec![
1333 /// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1334 /// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1335 /// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1336 /// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1337 /// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1338 /// ]);
1339 ///
1340 /// # Ok::<(), Box<dyn std::error::Error>>(())
1341 /// ```
1342 #[inline]
1343 pub fn following<'t>(
1344 &'t self,
1345 timestamp: Timestamp,
1346 ) -> TimeZoneFollowingTransitions<'t> {
1347 TimeZoneFollowingTransitions { tz: self, cur: timestamp }
1348 }
1349
1350 /// Used by the "preceding transitions" iterator.
1351 #[inline]
1352 fn previous_transition<'t>(
1353 &'t self,
1354 timestamp: Timestamp,
1355 ) -> Option<TimeZoneTransition<'t>> {
1356 repr::each! {
1357 &self.repr,
1358 UTC => None,
1359 UNKNOWN => None,
1360 FIXED(_offset) => None,
1361 STATIC_TZIF(tzif) => tzif.previous_transition(timestamp),
1362 ARC_TZIF(tzif) => tzif.previous_transition(timestamp),
1363 ARC_POSIX(posix) => posix.previous_transition(timestamp),
1364 }
1365 }
1366
1367 /// Used by the "following transitions" iterator.
1368 #[inline]
1369 fn next_transition<'t>(
1370 &'t self,
1371 timestamp: Timestamp,
1372 ) -> Option<TimeZoneTransition<'t>> {
1373 repr::each! {
1374 &self.repr,
1375 UTC => None,
1376 UNKNOWN => None,
1377 FIXED(_offset) => None,
1378 STATIC_TZIF(tzif) => tzif.next_transition(timestamp),
1379 ARC_TZIF(tzif) => tzif.next_transition(timestamp),
1380 ARC_POSIX(posix) => posix.next_transition(timestamp),
1381 }
1382 }
1383
1384 /// Returns a short description about the kind of this time zone.
1385 ///
1386 /// This is useful in error messages.
1387 fn kind_description(&self) -> &'static str {
1388 repr::each! {
1389 &self.repr,
1390 UTC => "UTC",
1391 UNKNOWN => "Etc/Unknown",
1392 FIXED(_offset) => "fixed",
1393 STATIC_TZIF(_tzif) => "IANA",
1394 ARC_TZIF(_tzif) => "IANA",
1395 ARC_POSIX(_posix) => "POSIX",
1396 }
1397 }
1398}
1399
1400// Exposed APIs for Jiff's time zone proc macro.
1401//
1402// These are NOT part of Jiff's public API. There are *zero* semver guarantees
1403// for them.
1404#[doc(hidden)]
1405impl TimeZone {
1406 pub const fn __internal_from_tzif(
1407 tzif: &'static crate::tz::tzif::TzifStatic,
1408 ) -> TimeZone {
1409 let repr = Repr::static_tzif(tzif);
1410 TimeZone { repr }
1411 }
1412
1413 /// Returns a dumb copy of this `TimeZone`.
1414 ///
1415 /// # Safety
1416 ///
1417 /// Callers must ensure that this time zone is UTC, unknown, a fixed
1418 /// offset or created with `TimeZone::__internal_from_tzif`.
1419 ///
1420 /// Namely, this specifically does not increment the ref count for
1421 /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`.
1422 /// This means that incorrect usage of this routine can lead to
1423 /// use-after-free.
1424 #[inline]
1425 pub const unsafe fn copy(&self) -> TimeZone {
1426 // SAFETY: Requirements are forwarded to the caller.
1427 unsafe { TimeZone { repr: self.repr.copy() } }
1428 }
1429}
1430
1431impl core::fmt::Debug for TimeZone {
1432 #[inline]
1433 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1434 f.debug_tuple("TimeZone").field(&self.repr).finish()
1435 }
1436}
1437
1438/// A representation a single time zone transition.
1439///
1440/// A time zone transition is an instant in time the marks the beginning of
1441/// a change in the offset from UTC that civil time is computed from in a
1442/// particular time zone. For example, when daylight saving time comes into
1443/// effect (or goes away). Another example is when a geographic region changes
1444/// its permanent offset from UTC.
1445///
1446/// This is a low level type that you generally shouldn't need. It's useful in
1447/// cases where you need to know something about the specific instants at which
1448/// time zone transitions occur. For example, an embedded device might need to
1449/// be explicitly programmed with daylight saving time transitions. APIs like
1450/// this enable callers to explore those transitions.
1451///
1452/// This type is yielded by the iterators
1453/// [`TimeZonePrecedingTransitions`] and
1454/// [`TimeZoneFollowingTransitions`]. The iterators are created by
1455/// [`TimeZone::preceding`] and [`TimeZone::following`], respectively.
1456///
1457/// # Example
1458///
1459/// This shows a somewhat silly example that finds all of the unique civil
1460/// (or "clock" or "local") times at which a time zone transition has occurred
1461/// in a particular time zone:
1462///
1463/// ```
1464/// use std::collections::BTreeSet;
1465/// use jiff::{civil, tz::TimeZone};
1466///
1467/// let tz = TimeZone::get("America/New_York")?;
1468/// let now = civil::date(2024, 12, 31).at(18, 25, 0, 0).to_zoned(tz.clone())?;
1469/// let mut set = BTreeSet::new();
1470/// for trans in tz.preceding(now.timestamp()) {
1471/// let time = tz.to_datetime(trans.timestamp()).time();
1472/// set.insert(time);
1473/// }
1474/// assert_eq!(Vec::from_iter(set), vec![
1475/// civil::time(1, 0, 0, 0), // typical transition out of DST
1476/// civil::time(3, 0, 0, 0), // typical transition into DST
1477/// civil::time(12, 0, 0, 0), // from when IANA starts keeping track
1478/// civil::time(19, 0, 0, 0), // from World War 2
1479/// ]);
1480///
1481/// # Ok::<(), Box<dyn std::error::Error>>(())
1482/// ```
1483#[derive(Clone, Debug)]
1484pub struct TimeZoneTransition<'t> {
1485 // We don't currently do anything smart to make iterating over
1486 // transitions faster. We could if we pushed the iterator impl down into
1487 // the respective modules (`posix` and `tzif`), but it's not clear such
1488 // optimization is really worth it. However, this API should permit that
1489 // kind of optimization in the future.
1490 pub(crate) timestamp: Timestamp,
1491 pub(crate) offset: Offset,
1492 pub(crate) abbrev: &'t str,
1493 pub(crate) dst: Dst,
1494}
1495
1496impl<'t> TimeZoneTransition<'t> {
1497 /// Returns the timestamp at which this transition began.
1498 ///
1499 /// # Example
1500 ///
1501 /// ```
1502 /// use jiff::{civil, tz::TimeZone};
1503 ///
1504 /// let tz = TimeZone::get("US/Eastern")?;
1505 /// // Look for the first time zone transition in `US/Eastern` following
1506 /// // 2023-03-09 00:00:00.
1507 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1508 /// let next = tz.following(start).next().unwrap();
1509 /// assert_eq!(
1510 /// next.timestamp().to_zoned(tz.clone()).to_string(),
1511 /// "2024-03-10T03:00:00-04:00[US/Eastern]",
1512 /// );
1513 ///
1514 /// # Ok::<(), Box<dyn std::error::Error>>(())
1515 /// ```
1516 #[inline]
1517 pub fn timestamp(&self) -> Timestamp {
1518 self.timestamp
1519 }
1520
1521 /// Returns the offset corresponding to this time zone transition. All
1522 /// instants at and following this transition's timestamp (and before the
1523 /// next transition's timestamp) need to apply this offset from UTC to get
1524 /// the civil or "local" time in the corresponding time zone.
1525 ///
1526 /// # Example
1527 ///
1528 /// ```
1529 /// use jiff::{civil, tz::{TimeZone, offset}};
1530 ///
1531 /// let tz = TimeZone::get("US/Eastern")?;
1532 /// // Get the offset of the next transition after
1533 /// // 2023-03-09 00:00:00.
1534 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1535 /// let next = tz.following(start).next().unwrap();
1536 /// assert_eq!(next.offset(), offset(-4));
1537 /// // Or go backwards to find the previous transition.
1538 /// let prev = tz.preceding(start).next().unwrap();
1539 /// assert_eq!(prev.offset(), offset(-5));
1540 ///
1541 /// # Ok::<(), Box<dyn std::error::Error>>(())
1542 /// ```
1543 #[inline]
1544 pub fn offset(&self) -> Offset {
1545 self.offset
1546 }
1547
1548 /// Returns the time zone abbreviation corresponding to this time
1549 /// zone transition. All instants at and following this transition's
1550 /// timestamp (and before the next transition's timestamp) may use this
1551 /// abbreviation when creating a human readable string. For example,
1552 /// this is the abbreviation used with the `%Z` specifier with Jiff's
1553 /// [`fmt::strtime`](crate::fmt::strtime) module.
1554 ///
1555 /// Note that abbreviations can to be ambiguous. For example, the
1556 /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`,
1557 /// `America/Chicago` and `America/Havana`.
1558 ///
1559 /// The lifetime of the string returned is tied to this
1560 /// `TimeZoneTransition`, which may be shorter than `'t` (the lifetime of
1561 /// the time zone this transition was created from).
1562 ///
1563 /// # Example
1564 ///
1565 /// ```
1566 /// use jiff::{civil, tz::TimeZone};
1567 ///
1568 /// let tz = TimeZone::get("US/Eastern")?;
1569 /// // Get the abbreviation of the next transition after
1570 /// // 2023-03-09 00:00:00.
1571 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1572 /// let next = tz.following(start).next().unwrap();
1573 /// assert_eq!(next.abbreviation(), "EDT");
1574 /// // Or go backwards to find the previous transition.
1575 /// let prev = tz.preceding(start).next().unwrap();
1576 /// assert_eq!(prev.abbreviation(), "EST");
1577 ///
1578 /// # Ok::<(), Box<dyn std::error::Error>>(())
1579 /// ```
1580 #[inline]
1581 pub fn abbreviation<'a>(&'a self) -> &'a str {
1582 self.abbrev
1583 }
1584
1585 /// Returns whether daylight saving time is enabled for this time zone
1586 /// transition.
1587 ///
1588 /// Callers should generally treat this as informational only. In
1589 /// particular, not all time zone transitions are related to daylight
1590 /// saving time. For example, some transitions are a result of a region
1591 /// permanently changing their offset from UTC.
1592 ///
1593 /// # Example
1594 ///
1595 /// ```
1596 /// use jiff::{civil, tz::{Dst, TimeZone}};
1597 ///
1598 /// let tz = TimeZone::get("US/Eastern")?;
1599 /// // Get the DST status of the next transition after
1600 /// // 2023-03-09 00:00:00.
1601 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1602 /// let next = tz.following(start).next().unwrap();
1603 /// assert_eq!(next.dst(), Dst::Yes);
1604 /// // Or go backwards to find the previous transition.
1605 /// let prev = tz.preceding(start).next().unwrap();
1606 /// assert_eq!(prev.dst(), Dst::No);
1607 ///
1608 /// # Ok::<(), Box<dyn std::error::Error>>(())
1609 /// ```
1610 #[inline]
1611 pub fn dst(&self) -> Dst {
1612 self.dst
1613 }
1614}
1615
1616/// An offset along with DST status and a time zone abbreviation.
1617///
1618/// This information can be computed from a [`TimeZone`] given a [`Timestamp`]
1619/// via [`TimeZone::to_offset_info`].
1620///
1621/// Generally, the extra information associated with the offset is not commonly
1622/// needed. And indeed, inspecting the daylight saving time status of a
1623/// particular instant in a time zone _usually_ leads to bugs. For example, not
1624/// all time zone transitions are the result of daylight saving time. Some are
1625/// the result of permanent changes to the standard UTC offset of a region.
1626///
1627/// This information is available via an API distinct from
1628/// [`TimeZone::to_offset`] because it is not commonly needed and because it
1629/// can sometimes be more expensive to compute.
1630///
1631/// The main use case for daylight saving time status or time zone
1632/// abbreviations is for formatting datetimes in an end user's locale. If you
1633/// want this, consider using the [`icu`] crate via [`jiff-icu`].
1634///
1635/// The lifetime parameter `'t` corresponds to the lifetime of the `TimeZone`
1636/// that this info was extracted from.
1637///
1638/// # Example
1639///
1640/// ```
1641/// use jiff::{tz::{self, Dst, TimeZone}, Timestamp};
1642///
1643/// let tz = TimeZone::get("America/New_York")?;
1644///
1645/// // A timestamp in DST in New York.
1646/// let ts = Timestamp::from_second(1_720_493_204)?;
1647/// let info = tz.to_offset_info(ts);
1648/// assert_eq!(info.offset(), tz::offset(-4));
1649/// assert_eq!(info.dst(), Dst::Yes);
1650/// assert_eq!(info.abbreviation(), "EDT");
1651/// assert_eq!(
1652/// info.offset().to_datetime(ts).to_string(),
1653/// "2024-07-08T22:46:44",
1654/// );
1655///
1656/// // A timestamp *not* in DST in New York.
1657/// let ts = Timestamp::from_second(1_704_941_204)?;
1658/// let info = tz.to_offset_info(ts);
1659/// assert_eq!(info.offset(), tz::offset(-5));
1660/// assert_eq!(info.dst(), Dst::No);
1661/// assert_eq!(info.abbreviation(), "EST");
1662/// assert_eq!(
1663/// info.offset().to_datetime(ts).to_string(),
1664/// "2024-01-10T21:46:44",
1665/// );
1666///
1667/// # Ok::<(), Box<dyn std::error::Error>>(())
1668/// ```
1669///
1670/// [`icu`]: https://docs.rs/icu
1671/// [`jiff-icu`]: https://docs.rs/jiff-icu
1672#[derive(Clone, Debug, Eq, Hash, PartialEq)]
1673pub struct TimeZoneOffsetInfo<'t> {
1674 pub(crate) offset: Offset,
1675 pub(crate) dst: Dst,
1676 pub(crate) abbreviation: TimeZoneAbbreviation<'t>,
1677}
1678
1679impl<'t> TimeZoneOffsetInfo<'t> {
1680 /// Returns the offset.
1681 ///
1682 /// The offset is duration, from UTC, that should be used to offset the
1683 /// civil time in a particular location.
1684 ///
1685 /// # Example
1686 ///
1687 /// ```
1688 /// use jiff::{civil, tz::{TimeZone, offset}};
1689 ///
1690 /// let tz = TimeZone::get("US/Eastern")?;
1691 /// // Get the offset for 2023-03-10 00:00:00.
1692 /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp();
1693 /// let info = tz.to_offset_info(start);
1694 /// assert_eq!(info.offset(), offset(-5));
1695 /// // Go forward a day and notice the offset changes due to DST!
1696 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1697 /// let info = tz.to_offset_info(start);
1698 /// assert_eq!(info.offset(), offset(-4));
1699 ///
1700 /// # Ok::<(), Box<dyn std::error::Error>>(())
1701 /// ```
1702 #[inline]
1703 pub fn offset(&self) -> Offset {
1704 self.offset
1705 }
1706
1707 /// Returns the time zone abbreviation corresponding to this offset info.
1708 ///
1709 /// Note that abbreviations can to be ambiguous. For example, the
1710 /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`,
1711 /// `America/Chicago` and `America/Havana`.
1712 ///
1713 /// The lifetime of the string returned is tied to this
1714 /// `TimeZoneOffsetInfo`, which may be shorter than `'t` (the lifetime of
1715 /// the time zone this transition was created from).
1716 ///
1717 /// # Example
1718 ///
1719 /// ```
1720 /// use jiff::{civil, tz::TimeZone};
1721 ///
1722 /// let tz = TimeZone::get("US/Eastern")?;
1723 /// // Get the time zone abbreviation for 2023-03-10 00:00:00.
1724 /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp();
1725 /// let info = tz.to_offset_info(start);
1726 /// assert_eq!(info.abbreviation(), "EST");
1727 /// // Go forward a day and notice the abbreviation changes due to DST!
1728 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1729 /// let info = tz.to_offset_info(start);
1730 /// assert_eq!(info.abbreviation(), "EDT");
1731 ///
1732 /// # Ok::<(), Box<dyn std::error::Error>>(())
1733 /// ```
1734 #[inline]
1735 pub fn abbreviation(&self) -> &str {
1736 self.abbreviation.as_str()
1737 }
1738
1739 /// Returns whether daylight saving time is enabled for this offset
1740 /// info.
1741 ///
1742 /// Callers should generally treat this as informational only. In
1743 /// particular, not all time zone transitions are related to daylight
1744 /// saving time. For example, some transitions are a result of a region
1745 /// permanently changing their offset from UTC.
1746 ///
1747 /// # Example
1748 ///
1749 /// ```
1750 /// use jiff::{civil, tz::{Dst, TimeZone}};
1751 ///
1752 /// let tz = TimeZone::get("US/Eastern")?;
1753 /// // Get the DST status of 2023-03-11 00:00:00.
1754 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1755 /// let info = tz.to_offset_info(start);
1756 /// assert_eq!(info.dst(), Dst::Yes);
1757 ///
1758 /// # Ok::<(), Box<dyn std::error::Error>>(())
1759 /// ```
1760 #[inline]
1761 pub fn dst(&self) -> Dst {
1762 self.dst
1763 }
1764}
1765
1766/// An iterator over time zone transitions going backward in time.
1767///
1768/// This iterator is created by [`TimeZone::preceding`].
1769///
1770/// # Example: show the 5 previous time zone transitions
1771///
1772/// This shows how to find the 5 preceding time zone transitions (from a
1773/// particular datetime) for a particular time zone:
1774///
1775/// ```
1776/// use jiff::{tz::offset, Zoned};
1777///
1778/// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1779/// let transitions = now
1780/// .time_zone()
1781/// .preceding(now.timestamp())
1782/// .take(5)
1783/// .map(|t| (
1784/// t.timestamp().to_zoned(now.time_zone().clone()),
1785/// t.offset(),
1786/// t.abbreviation().to_string(),
1787/// ))
1788/// .collect::<Vec<_>>();
1789/// assert_eq!(transitions, vec![
1790/// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1791/// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1792/// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1793/// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1794/// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1795/// ]);
1796///
1797/// # Ok::<(), Box<dyn std::error::Error>>(())
1798/// ```
1799#[derive(Clone, Debug)]
1800pub struct TimeZonePrecedingTransitions<'t> {
1801 tz: &'t TimeZone,
1802 cur: Timestamp,
1803}
1804
1805impl<'t> Iterator for TimeZonePrecedingTransitions<'t> {
1806 type Item = TimeZoneTransition<'t>;
1807
1808 fn next(&mut self) -> Option<TimeZoneTransition<'t>> {
1809 let trans = self.tz.previous_transition(self.cur)?;
1810 self.cur = trans.timestamp();
1811 Some(trans)
1812 }
1813}
1814
1815impl<'t> core::iter::FusedIterator for TimeZonePrecedingTransitions<'t> {}
1816
1817/// An iterator over time zone transitions going forward in time.
1818///
1819/// This iterator is created by [`TimeZone::following`].
1820///
1821/// # Example: show the 5 next time zone transitions
1822///
1823/// This shows how to find the 5 following time zone transitions (from a
1824/// particular datetime) for a particular time zone:
1825///
1826/// ```
1827/// use jiff::{tz::offset, Zoned};
1828///
1829/// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1830/// let transitions = now
1831/// .time_zone()
1832/// .following(now.timestamp())
1833/// .take(5)
1834/// .map(|t| (
1835/// t.timestamp().to_zoned(now.time_zone().clone()),
1836/// t.offset(),
1837/// t.abbreviation().to_string(),
1838/// ))
1839/// .collect::<Vec<_>>();
1840/// assert_eq!(transitions, vec![
1841/// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1842/// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1843/// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1844/// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1845/// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1846/// ]);
1847///
1848/// # Ok::<(), Box<dyn std::error::Error>>(())
1849/// ```
1850#[derive(Clone, Debug)]
1851pub struct TimeZoneFollowingTransitions<'t> {
1852 tz: &'t TimeZone,
1853 cur: Timestamp,
1854}
1855
1856impl<'t> Iterator for TimeZoneFollowingTransitions<'t> {
1857 type Item = TimeZoneTransition<'t>;
1858
1859 fn next(&mut self) -> Option<TimeZoneTransition<'t>> {
1860 let trans = self.tz.next_transition(self.cur)?;
1861 self.cur = trans.timestamp();
1862 Some(trans)
1863 }
1864}
1865
1866impl<'t> core::iter::FusedIterator for TimeZoneFollowingTransitions<'t> {}
1867
1868/// A helper type for converting a `TimeZone` to a succinct human readable
1869/// description.
1870///
1871/// This is principally used in error messages in various places.
1872///
1873/// A previous iteration of this was just an `as_str() -> &str` method on
1874/// `TimeZone`, but that's difficult to do without relying on dynamic memory
1875/// allocation (or chunky arrays).
1876pub(crate) struct DiagnosticName<'a>(&'a TimeZone);
1877
1878impl<'a> core::fmt::Display for DiagnosticName<'a> {
1879 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1880 repr::each! {
1881 &self.0.repr,
1882 UTC => f.write_str("UTC"),
1883 UNKNOWN => f.write_str("Etc/Unknown"),
1884 FIXED(offset) => offset.fmt(f),
1885 STATIC_TZIF(tzif) => f.write_str(tzif.name().unwrap_or("Local")),
1886 ARC_TZIF(tzif) => f.write_str(tzif.name().unwrap_or("Local")),
1887 ARC_POSIX(posix) => posix.fmt(f),
1888 }
1889 }
1890}
1891
1892/// A light abstraction over different representations of a time zone
1893/// abbreviation.
1894///
1895/// The lifetime parameter `'t` corresponds to the lifetime of the time zone
1896/// that produced this abbreviation.
1897#[derive(Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
1898pub(crate) enum TimeZoneAbbreviation<'t> {
1899 /// For when the abbreviation is borrowed directly from other data. For
1900 /// example, from TZif or from POSIX TZ strings.
1901 Borrowed(&'t str),
1902 /// For when the abbreviation has to be derived from other data. For
1903 /// example, from a fixed offset.
1904 ///
1905 /// The idea here is that a `TimeZone` shouldn't need to store the
1906 /// string representation of a fixed offset. Particularly in core-only
1907 /// environments, this is quite wasteful. So we make the string on-demand
1908 /// only when it's requested.
1909 ///
1910 /// An alternative design is to just implement `Display` and reuse
1911 /// `Offset`'s `Display` impl, but then we couldn't offer a `-> &str` API.
1912 /// I feel like that's just a bit overkill, and really just comes from the
1913 /// core-only straight-jacket.
1914 Owned(ArrayStr<9>),
1915}
1916
1917impl<'t> TimeZoneAbbreviation<'t> {
1918 /// Returns this abbreviation as a string borrowed from `self`.
1919 ///
1920 /// Notice that, like `Cow`, the lifetime of the string returned is
1921 /// tied to `self` and thus may be shorter than `'t`.
1922 fn as_str<'a>(&'a self) -> &'a str {
1923 match *self {
1924 TimeZoneAbbreviation::Borrowed(s) => s,
1925 TimeZoneAbbreviation::Owned(ref s) => s.as_str(),
1926 }
1927 }
1928}
1929
1930/// This module defines the internal representation of a `TimeZone`.
1931///
1932/// This module exists to _encapsulate_ the representation rigorously and
1933/// expose a safe and sound API.
1934// To squash warnings on older versions of Rust. Our polyfill below should
1935// match what std does on newer versions of Rust, so the confusability should
1936// be fine. ---AG
1937#[allow(unstable_name_collisions)]
1938mod repr {
1939 use core::mem::ManuallyDrop;
1940
1941 use crate::{tz::tzif::TzifStatic, util::constant::unwrap};
1942 #[cfg(feature = "alloc")]
1943 use crate::{
1944 tz::{posix::PosixTimeZoneOwned, tzif::TzifOwned},
1945 util::sync::Arc,
1946 };
1947
1948 use super::Offset;
1949
1950 // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used.
1951 #[allow(unused_imports)]
1952 use self::polyfill::{without_provenance, StrictProvenancePolyfill};
1953
1954 /// A macro for "matching" over the time zone representation variants.
1955 ///
1956 /// This macro is safe to use.
1957 ///
1958 /// Note that the `ARC_TZIF` and `ARC_POSIX` branches are automatically
1959 /// removed when `alloc` isn't enabled. Users of this macro needn't handle
1960 /// the `cfg` themselves.
1961 macro_rules! each {
1962 (
1963 $repr:expr,
1964 UTC => $utc:expr,
1965 UNKNOWN => $unknown:expr,
1966 FIXED($offset:ident) => $fixed:expr,
1967 STATIC_TZIF($static_tzif:ident) => $static_tzif_block:expr,
1968 ARC_TZIF($arc_tzif:ident) => $arc_tzif_block:expr,
1969 ARC_POSIX($arc_posix:ident) => $arc_posix_block:expr,
1970 ) => {{
1971 let repr = $repr;
1972 match repr.tag() {
1973 Repr::UTC => $utc,
1974 Repr::UNKNOWN => $unknown,
1975 Repr::FIXED => {
1976 // SAFETY: We've ensured our pointer tag is correct.
1977 let $offset = unsafe { repr.get_fixed() };
1978 $fixed
1979 }
1980 Repr::STATIC_TZIF => {
1981 // SAFETY: We've ensured our pointer tag is correct.
1982 let $static_tzif = unsafe { repr.get_static_tzif() };
1983 $static_tzif_block
1984 }
1985 #[cfg(feature = "alloc")]
1986 Repr::ARC_TZIF => {
1987 // SAFETY: We've ensured our pointer tag is correct.
1988 let $arc_tzif = unsafe { repr.get_arc_tzif() };
1989 $arc_tzif_block
1990 }
1991 #[cfg(feature = "alloc")]
1992 Repr::ARC_POSIX => {
1993 // SAFETY: We've ensured our pointer tag is correct.
1994 let $arc_posix = unsafe { repr.get_arc_posix() };
1995 $arc_posix_block
1996 }
1997 _ => {
1998 debug_assert!(false, "each: invalid time zone repr tag!");
1999 // SAFETY: The constructors for `Repr` guarantee that the
2000 // tag is always one of the values matched above.
2001 unsafe {
2002 core::hint::unreachable_unchecked();
2003 }
2004 }
2005 }
2006 }};
2007 }
2008 pub(super) use each;
2009
2010 /// The internal representation of a `TimeZone`.
2011 ///
2012 /// It has 6 different possible variants: `UTC`, `Etc/Unknown`, fixed
2013 /// offset, `static` TZif, `Arc` TZif or `Arc` POSIX time zone.
2014 ///
2015 /// This design uses pointer tagging so that:
2016 ///
2017 /// * The size of a `TimeZone` stays no bigger than a single word.
2018 /// * In core-only environments, a `TimeZone` can be created from
2019 /// compile-time TZif data without allocating.
2020 /// * UTC, unknown and fixed offset time zone does not require allocating.
2021 /// * We can still alloc for TZif and POSIX time zones created at runtime.
2022 /// (Allocating for TZif at runtime is the intended common case, and
2023 /// corresponds to reading `/usr/share/zoneinfo` entries.)
2024 ///
2025 /// We achieve this through pointer tagging and careful use of a strict
2026 /// provenance polyfill (because of MSRV). We use the lower 4 bits of a
2027 /// pointer to indicate which variant we have. This is sound because we
2028 /// require all types that we allocate for to have a minimum alignment of
2029 /// 8 bytes.
2030 pub(super) struct Repr {
2031 ptr: *const u8,
2032 }
2033
2034 impl Repr {
2035 const BITS: usize = 0b111;
2036 pub(super) const UTC: usize = 1;
2037 pub(super) const UNKNOWN: usize = 2;
2038 pub(super) const FIXED: usize = 3;
2039 pub(super) const STATIC_TZIF: usize = 0;
2040 pub(super) const ARC_TZIF: usize = 4;
2041 pub(super) const ARC_POSIX: usize = 5;
2042
2043 // The minimum alignment required for any heap allocated time zone
2044 // variants. This is related to the number of tags. We have 6 distinct
2045 // values above, which means we need an alignment of at least 6. Since
2046 // alignment must be a power of 2, the smallest possible alignment
2047 // is 8.
2048 const ALIGN: usize = 8;
2049
2050 /// Creates a representation for a `UTC` time zone.
2051 #[inline]
2052 pub(super) const fn utc() -> Repr {
2053 let ptr = without_provenance(Repr::UTC);
2054 Repr { ptr }
2055 }
2056
2057 /// Creates a representation for a `Etc/Unknown` time zone.
2058 #[inline]
2059 pub(super) const fn unknown() -> Repr {
2060 let ptr = without_provenance(Repr::UNKNOWN);
2061 Repr { ptr }
2062 }
2063
2064 /// Creates a representation for a fixed offset time zone.
2065 #[inline]
2066 pub(super) const fn fixed(offset: Offset) -> Repr {
2067 let seconds = offset.seconds();
2068 // OK because offset is in -93599..=93599.
2069 let shifted = unwrap!(
2070 seconds.checked_shl(4),
2071 "offset small enough for left shift by 4 bits",
2072 );
2073 assert!(usize::MAX >= 4_294_967_295);
2074 // usize cast is okay because Jiff requires 32-bit.
2075 let ptr = without_provenance((shifted as usize) | Repr::FIXED);
2076 Repr { ptr }
2077 }
2078
2079 /// Creates a representation for a created-at-compile-time TZif time
2080 /// zone.
2081 ///
2082 /// This can only be correctly called by the `jiff-static` proc macro.
2083 #[inline]
2084 pub(super) const fn static_tzif(tzif: &'static TzifStatic) -> Repr {
2085 assert!(core::mem::align_of::<TzifStatic>() >= Repr::ALIGN);
2086 let tzif = (tzif as *const TzifStatic).cast::<u8>();
2087 // We very specifically do no materialize the pointer address here
2088 // because 1) it's UB and 2) the compiler generally prevents. This
2089 // is because in a const context, the specific pointer address
2090 // cannot be relied upon. Yet, we still want to do pointer tagging.
2091 //
2092 // Thankfully, this is the only variant that is a pointer that
2093 // we want to create in a const context. So we just make this
2094 // variant's tag `0`, and thus, no explicit pointer tagging is
2095 // required. (Because we ensure the alignment is at least 4, and
2096 // thus the least significant 3 bits are 0.)
2097 //
2098 // If this ends up not working out or if we need to support
2099 // another `static` variant, then we could perhaps to pointer
2100 // tagging with pointer arithmetic (like what the `tagged-pointer`
2101 // crate does). I haven't tried it though and I'm unclear if it
2102 // work.
2103 Repr { ptr: tzif }
2104 }
2105
2106 /// Creates a representation for a TZif time zone.
2107 #[cfg(feature = "alloc")]
2108 #[inline]
2109 pub(super) fn arc_tzif(tzif: Arc<TzifOwned>) -> Repr {
2110 assert!(core::mem::align_of::<TzifOwned>() >= Repr::ALIGN);
2111 let tzif = Arc::into_raw(tzif).cast::<u8>();
2112 assert!(tzif.addr() % 4 == 0);
2113 let ptr = tzif.map_addr(|addr| addr | Repr::ARC_TZIF);
2114 Repr { ptr }
2115 }
2116
2117 /// Creates a representation for a POSIX time zone.
2118 #[cfg(feature = "alloc")]
2119 #[inline]
2120 pub(super) fn arc_posix(posix_tz: Arc<PosixTimeZoneOwned>) -> Repr {
2121 assert!(
2122 core::mem::align_of::<PosixTimeZoneOwned>() >= Repr::ALIGN
2123 );
2124 let posix_tz = Arc::into_raw(posix_tz).cast::<u8>();
2125 assert!(posix_tz.addr() % 4 == 0);
2126 let ptr = posix_tz.map_addr(|addr| addr | Repr::ARC_POSIX);
2127 Repr { ptr }
2128 }
2129
2130 /// Gets the offset representation.
2131 ///
2132 /// # Safety
2133 ///
2134 /// Callers must ensure that the pointer tag is `FIXED`.
2135 #[inline]
2136 pub(super) unsafe fn get_fixed(&self) -> Offset {
2137 #[allow(unstable_name_collisions)]
2138 let addr = self.ptr.addr();
2139 // NOTE: Because of sign extension, we need to cast to `i32`
2140 // before shifting.
2141 Offset::from_seconds_unchecked((addr as i32) >> 4)
2142 }
2143
2144 /// Returns true if and only if this representation corresponds to the
2145 /// `Etc/Unknown` time zone.
2146 #[inline]
2147 pub(super) fn is_unknown(&self) -> bool {
2148 self.tag() == Repr::UNKNOWN
2149 }
2150
2151 /// Gets the static TZif representation.
2152 ///
2153 /// # Safety
2154 ///
2155 /// Callers must ensure that the pointer tag is `STATIC_TZIF`.
2156 #[inline]
2157 pub(super) unsafe fn get_static_tzif(&self) -> &'static TzifStatic {
2158 #[allow(unstable_name_collisions)]
2159 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2160 // SAFETY: Getting a `STATIC_TZIF` tag is only possible when
2161 // `self.ptr` was constructed from a valid and aligned (to at least
2162 // 4 bytes) `&TzifStatic` borrow. Which must be guaranteed by the
2163 // caller. We've also removed the tag bits above, so we must now
2164 // have the original pointer.
2165 unsafe { &*ptr.cast::<TzifStatic>() }
2166 }
2167
2168 /// Gets the `Arc` TZif representation.
2169 ///
2170 /// # Safety
2171 ///
2172 /// Callers must ensure that the pointer tag is `ARC_TZIF`.
2173 #[cfg(feature = "alloc")]
2174 #[inline]
2175 pub(super) unsafe fn get_arc_tzif<'a>(&'a self) -> &'a TzifOwned {
2176 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2177 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2178 // `self.ptr` was constructed from a valid and aligned
2179 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2180 // the tag bits above, so we must now have the original
2181 // pointer.
2182 let arc = ManuallyDrop::new(unsafe {
2183 Arc::from_raw(ptr.cast::<TzifOwned>())
2184 });
2185 // SAFETY: The lifetime of the pointer returned is always
2186 // valid as long as the strong count on `arc` is at least
2187 // 1. Since the lifetime is no longer than `Repr` itself,
2188 // and a `Repr` being alive implies there is at least 1
2189 // for the strong `Arc` count, it follows that the lifetime
2190 // returned here is correct.
2191 unsafe { &*Arc::as_ptr(&arc) }
2192 }
2193
2194 /// Gets the `Arc` POSIX time zone representation.
2195 ///
2196 /// # Safety
2197 ///
2198 /// Callers must ensure that the pointer tag is `ARC_POSIX`.
2199 #[cfg(feature = "alloc")]
2200 #[inline]
2201 pub(super) unsafe fn get_arc_posix<'a>(
2202 &'a self,
2203 ) -> &'a PosixTimeZoneOwned {
2204 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2205 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2206 // `self.ptr` was constructed from a valid and aligned (to at least
2207 // 4 bytes) `Arc<PosixTimeZoneOwned>`. We've removed the tag
2208 // bits above, so we must now have the original pointer.
2209 let arc = ManuallyDrop::new(unsafe {
2210 Arc::from_raw(ptr.cast::<PosixTimeZoneOwned>())
2211 });
2212 // SAFETY: The lifetime of the pointer returned is always
2213 // valid as long as the strong count on `arc` is at least
2214 // 1. Since the lifetime is no longer than `Repr` itself,
2215 // and a `Repr` being alive implies there is at least 1
2216 // for the strong `Arc` count, it follows that the lifetime
2217 // returned here is correct.
2218 unsafe { &*Arc::as_ptr(&arc) }
2219 }
2220
2221 /// Returns the tag on the representation's pointer.
2222 ///
2223 /// The value is guaranteed to be one of the constant tag values.
2224 #[inline]
2225 pub(super) fn tag(&self) -> usize {
2226 #[allow(unstable_name_collisions)]
2227 {
2228 self.ptr.addr() & Repr::BITS
2229 }
2230 }
2231
2232 /// Returns a dumb copy of this representation.
2233 ///
2234 /// # Safety
2235 ///
2236 /// Callers must ensure that this representation's tag is UTC,
2237 /// UNKNOWN, FIXED or STATIC_TZIF.
2238 ///
2239 /// Namely, this specifically does not increment the ref count for
2240 /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`.
2241 /// This means that incorrect usage of this routine can lead to
2242 /// use-after-free.
2243 ///
2244 /// NOTE: It would be nice if we could make this `copy` routine safe,
2245 /// or at least panic if it's misused. But to do that, you need to know
2246 /// the time zone variant. And to know the time zone variant, you need
2247 /// to "look" at the tag in the pointer. And looking at the address of
2248 /// a pointer in a `const` context is precarious.
2249 #[inline]
2250 pub(super) const unsafe fn copy(&self) -> Repr {
2251 Repr { ptr: self.ptr }
2252 }
2253 }
2254
2255 // SAFETY: We use automatic reference counting.
2256 unsafe impl Send for Repr {}
2257 // SAFETY: We don't use an interior mutability and otherwise don't permit
2258 // any kind of mutation (other than for an `Arc` managing its ref counts)
2259 // of a `Repr`.
2260 unsafe impl Sync for Repr {}
2261
2262 impl core::fmt::Debug for Repr {
2263 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2264 each! {
2265 self,
2266 UTC => f.write_str("UTC"),
2267 UNKNOWN => f.write_str("Etc/Unknown"),
2268 FIXED(offset) => core::fmt::Debug::fmt(&offset, f),
2269 STATIC_TZIF(tzif) => {
2270 // The full debug output is a bit much, so constrain it.
2271 let field = tzif.name().unwrap_or("Local");
2272 f.debug_tuple("TZif").field(&field).finish()
2273 },
2274 ARC_TZIF(tzif) => {
2275 // The full debug output is a bit much, so constrain it.
2276 let field = tzif.name().unwrap_or("Local");
2277 f.debug_tuple("TZif").field(&field).finish()
2278 },
2279 ARC_POSIX(posix) => {
2280 f.write_str("Posix(")?;
2281 core::fmt::Display::fmt(&posix, f)?;
2282 f.write_str(")")
2283 },
2284 }
2285 }
2286 }
2287
2288 impl Clone for Repr {
2289 #[inline]
2290 fn clone(&self) -> Repr {
2291 // This `match` is written in an exhaustive fashion so that if
2292 // a new tag is added, it should be explicitly considered here.
2293 match self.tag() {
2294 // These are all `Copy` and can just be memcpy'd as-is.
2295 Repr::UTC
2296 | Repr::UNKNOWN
2297 | Repr::FIXED
2298 | Repr::STATIC_TZIF => Repr { ptr: self.ptr },
2299 #[cfg(feature = "alloc")]
2300 Repr::ARC_TZIF => {
2301 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2302 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2303 // `self.ptr` was constructed from a valid and aligned
2304 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2305 // the tag bits above, so we must now have the original
2306 // pointer.
2307 unsafe {
2308 Arc::increment_strong_count(ptr.cast::<TzifOwned>());
2309 }
2310 Repr { ptr: self.ptr }
2311 }
2312 #[cfg(feature = "alloc")]
2313 Repr::ARC_POSIX => {
2314 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2315 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2316 // `self.ptr` was constructed from a valid and aligned (to
2317 // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've
2318 // removed the tag bits above, so we must now have the
2319 // original pointer.
2320 unsafe {
2321 Arc::increment_strong_count(
2322 ptr.cast::<PosixTimeZoneOwned>(),
2323 );
2324 }
2325 Repr { ptr: self.ptr }
2326 }
2327 _ => {
2328 debug_assert!(false, "clone: invalid time zone repr tag!");
2329 // SAFETY: The constructors for `Repr` guarantee that the
2330 // tag is always one of the values matched above.
2331 unsafe {
2332 core::hint::unreachable_unchecked();
2333 }
2334 }
2335 }
2336 }
2337 }
2338
2339 impl Drop for Repr {
2340 #[inline]
2341 fn drop(&mut self) {
2342 // This `match` is written in an exhaustive fashion so that if
2343 // a new tag is added, it should be explicitly considered here.
2344 match self.tag() {
2345 // These are all `Copy` and have no destructor.
2346 Repr::UTC
2347 | Repr::UNKNOWN
2348 | Repr::FIXED
2349 | Repr::STATIC_TZIF => {}
2350 #[cfg(feature = "alloc")]
2351 Repr::ARC_TZIF => {
2352 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2353 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2354 // `self.ptr` was constructed from a valid and aligned
2355 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2356 // the tag bits above, so we must now have the original
2357 // pointer.
2358 unsafe {
2359 Arc::decrement_strong_count(ptr.cast::<TzifOwned>());
2360 }
2361 }
2362 #[cfg(feature = "alloc")]
2363 Repr::ARC_POSIX => {
2364 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2365 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2366 // `self.ptr` was constructed from a valid and aligned (to
2367 // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've
2368 // removed the tag bits above, so we must now have the
2369 // original pointer.
2370 unsafe {
2371 Arc::decrement_strong_count(
2372 ptr.cast::<PosixTimeZoneOwned>(),
2373 );
2374 }
2375 }
2376 _ => {
2377 debug_assert!(false, "drop: invalid time zone repr tag!");
2378 // SAFETY: The constructors for `Repr` guarantee that the
2379 // tag is always one of the values matched above.
2380 unsafe {
2381 core::hint::unreachable_unchecked();
2382 }
2383 }
2384 }
2385 }
2386 }
2387
2388 impl Eq for Repr {}
2389
2390 impl PartialEq for Repr {
2391 fn eq(&self, other: &Repr) -> bool {
2392 if self.tag() != other.tag() {
2393 return false;
2394 }
2395 each! {
2396 self,
2397 UTC => true,
2398 UNKNOWN => true,
2399 // SAFETY: OK, because we know the tags are equivalent and
2400 // `self` has a `FIXED` tag.
2401 FIXED(offset) => offset == unsafe { other.get_fixed() },
2402 // SAFETY: OK, because we know the tags are equivalent and
2403 // `self` has a `STATIC_TZIF` tag.
2404 STATIC_TZIF(tzif) => tzif == unsafe { other.get_static_tzif() },
2405 // SAFETY: OK, because we know the tags are equivalent and
2406 // `self` has an `ARC_TZIF` tag.
2407 ARC_TZIF(tzif) => tzif == unsafe { other.get_arc_tzif() },
2408 // SAFETY: OK, because we know the tags are equivalent and
2409 // `self` has an `ARC_POSIX` tag.
2410 ARC_POSIX(posix) => posix == unsafe { other.get_arc_posix() },
2411 }
2412 }
2413 }
2414
2415 /// This is a polyfill for a small subset of std's strict provenance APIs.
2416 ///
2417 /// The strict provenance APIs in `core` were stabilized in Rust 1.84,
2418 /// but it will likely be a while before Jiff can use them. (At time of
2419 /// writing, 2025-02-24, Jiff's MSRV is Rust 1.70.)
2420 mod polyfill {
2421 pub(super) const fn without_provenance(addr: usize) -> *const u8 {
2422 // SAFETY: Every valid `usize` is also a valid pointer (but not
2423 // necessarily legal to dereference).
2424 //
2425 // MSRV(1.84): We *really* ought to be using
2426 // `core::ptr::without_provenance` here, but Jiff's MSRV prevents
2427 // us.
2428 #[allow(integer_to_ptr_transmutes)]
2429 unsafe {
2430 core::mem::transmute(addr)
2431 }
2432 }
2433
2434 // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used.
2435 #[allow(dead_code)]
2436 pub(super) trait StrictProvenancePolyfill:
2437 Sized + Clone + Copy
2438 {
2439 fn addr(&self) -> usize;
2440 fn with_addr(&self, addr: usize) -> Self;
2441 fn map_addr(&self, map: impl FnOnce(usize) -> usize) -> Self {
2442 self.with_addr(map(self.addr()))
2443 }
2444 }
2445
2446 impl StrictProvenancePolyfill for *const u8 {
2447 fn addr(&self) -> usize {
2448 // SAFETY: Pointer-to-integer transmutes are valid (if you are
2449 // okay with losing the provenance).
2450 //
2451 // The implementation in std says that this isn't guaranteed to
2452 // be sound outside of std, but I'm not sure how else to do it.
2453 // In practice, this seems likely fine?
2454 unsafe { core::mem::transmute(self.cast::<()>()) }
2455 }
2456
2457 fn with_addr(&self, address: usize) -> Self {
2458 let self_addr = self.addr() as isize;
2459 let dest_addr = address as isize;
2460 let offset = dest_addr.wrapping_sub(self_addr);
2461 self.wrapping_offset(offset)
2462 }
2463 }
2464 }
2465}
2466
2467#[cfg(test)]
2468mod tests {
2469 #[cfg(feature = "alloc")]
2470 use crate::tz::testdata::TzifTestFile;
2471 use crate::{civil::date, tz::offset};
2472
2473 use super::*;
2474
2475 fn unambiguous(offset_hours: i8) -> AmbiguousOffset {
2476 let offset = offset(offset_hours);
2477 o_unambiguous(offset)
2478 }
2479
2480 fn gap(
2481 earlier_offset_hours: i8,
2482 later_offset_hours: i8,
2483 ) -> AmbiguousOffset {
2484 let earlier = offset(earlier_offset_hours);
2485 let later = offset(later_offset_hours);
2486 o_gap(earlier, later)
2487 }
2488
2489 fn fold(
2490 earlier_offset_hours: i8,
2491 later_offset_hours: i8,
2492 ) -> AmbiguousOffset {
2493 let earlier = offset(earlier_offset_hours);
2494 let later = offset(later_offset_hours);
2495 o_fold(earlier, later)
2496 }
2497
2498 fn o_unambiguous(offset: Offset) -> AmbiguousOffset {
2499 AmbiguousOffset::Unambiguous { offset }
2500 }
2501
2502 fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset {
2503 AmbiguousOffset::Gap { before: earlier, after: later }
2504 }
2505
2506 fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset {
2507 AmbiguousOffset::Fold { before: earlier, after: later }
2508 }
2509
2510 #[cfg(feature = "alloc")]
2511 #[test]
2512 fn time_zone_tzif_to_ambiguous_timestamp() {
2513 let tests: &[(&str, &[_])] = &[
2514 (
2515 "America/New_York",
2516 &[
2517 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
2518 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
2519 ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)),
2520 ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)),
2521 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)),
2522 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)),
2523 ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)),
2524 ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)),
2525 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
2526 ],
2527 ),
2528 (
2529 "Europe/Dublin",
2530 &[
2531 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)),
2532 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
2533 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)),
2534 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)),
2535 ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)),
2536 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)),
2537 ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)),
2538 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)),
2539 ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)),
2540 ],
2541 ),
2542 (
2543 "Australia/Tasmania",
2544 &[
2545 ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)),
2546 ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)),
2547 ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)),
2548 ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)),
2549 ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)),
2550 ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)),
2551 ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)),
2552 ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)),
2553 ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)),
2554 ],
2555 ),
2556 (
2557 "Antarctica/Troll",
2558 &[
2559 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
2560 // test the gap
2561 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
2562 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)),
2563 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)),
2564 // still in the gap!
2565 ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)),
2566 ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)),
2567 // finally out
2568 ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)),
2569 // test the fold
2570 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)),
2571 ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)),
2572 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)),
2573 // still in the fold!
2574 ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)),
2575 ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)),
2576 // finally out
2577 ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)),
2578 ],
2579 ),
2580 (
2581 "America/St_Johns",
2582 &[
2583 (
2584 (1969, 12, 31, 20, 30, 0, 0),
2585 o_unambiguous(-Offset::hms(3, 30, 0)),
2586 ),
2587 (
2588 (2024, 3, 10, 1, 59, 59, 999_999_999),
2589 o_unambiguous(-Offset::hms(3, 30, 0)),
2590 ),
2591 (
2592 (2024, 3, 10, 2, 0, 0, 0),
2593 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
2594 ),
2595 (
2596 (2024, 3, 10, 2, 59, 59, 999_999_999),
2597 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
2598 ),
2599 (
2600 (2024, 3, 10, 3, 0, 0, 0),
2601 o_unambiguous(-Offset::hms(2, 30, 0)),
2602 ),
2603 (
2604 (2024, 11, 3, 0, 59, 59, 999_999_999),
2605 o_unambiguous(-Offset::hms(2, 30, 0)),
2606 ),
2607 (
2608 (2024, 11, 3, 1, 0, 0, 0),
2609 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
2610 ),
2611 (
2612 (2024, 11, 3, 1, 59, 59, 999_999_999),
2613 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
2614 ),
2615 (
2616 (2024, 11, 3, 2, 0, 0, 0),
2617 o_unambiguous(-Offset::hms(3, 30, 0)),
2618 ),
2619 ],
2620 ),
2621 // This time zone has an interesting transition where it jumps
2622 // backwards a full day at 1867-10-19T15:30:00.
2623 (
2624 "America/Sitka",
2625 &[
2626 ((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)),
2627 (
2628 (-9999, 1, 2, 16, 58, 46, 0),
2629 o_unambiguous(Offset::hms(14, 58, 47)),
2630 ),
2631 (
2632 (1867, 10, 18, 15, 29, 59, 0),
2633 o_unambiguous(Offset::hms(14, 58, 47)),
2634 ),
2635 (
2636 (1867, 10, 18, 15, 30, 0, 0),
2637 // A fold of 24 hours!!!
2638 o_fold(
2639 Offset::hms(14, 58, 47),
2640 -Offset::hms(9, 1, 13),
2641 ),
2642 ),
2643 (
2644 (1867, 10, 19, 15, 29, 59, 999_999_999),
2645 // Still in the fold...
2646 o_fold(
2647 Offset::hms(14, 58, 47),
2648 -Offset::hms(9, 1, 13),
2649 ),
2650 ),
2651 (
2652 (1867, 10, 19, 15, 30, 0, 0),
2653 // Finally out.
2654 o_unambiguous(-Offset::hms(9, 1, 13)),
2655 ),
2656 ],
2657 ),
2658 // As with to_datetime, we test every possible transition
2659 // point here since this time zone has a small number of them.
2660 (
2661 "Pacific/Honolulu",
2662 &[
2663 (
2664 (1896, 1, 13, 11, 59, 59, 0),
2665 o_unambiguous(-Offset::hms(10, 31, 26)),
2666 ),
2667 (
2668 (1896, 1, 13, 12, 0, 0, 0),
2669 o_gap(
2670 -Offset::hms(10, 31, 26),
2671 -Offset::hms(10, 30, 0),
2672 ),
2673 ),
2674 (
2675 (1896, 1, 13, 12, 1, 25, 0),
2676 o_gap(
2677 -Offset::hms(10, 31, 26),
2678 -Offset::hms(10, 30, 0),
2679 ),
2680 ),
2681 (
2682 (1896, 1, 13, 12, 1, 26, 0),
2683 o_unambiguous(-Offset::hms(10, 30, 0)),
2684 ),
2685 (
2686 (1933, 4, 30, 1, 59, 59, 0),
2687 o_unambiguous(-Offset::hms(10, 30, 0)),
2688 ),
2689 (
2690 (1933, 4, 30, 2, 0, 0, 0),
2691 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2692 ),
2693 (
2694 (1933, 4, 30, 2, 59, 59, 0),
2695 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2696 ),
2697 (
2698 (1933, 4, 30, 3, 0, 0, 0),
2699 o_unambiguous(-Offset::hms(9, 30, 0)),
2700 ),
2701 (
2702 (1933, 5, 21, 10, 59, 59, 0),
2703 o_unambiguous(-Offset::hms(9, 30, 0)),
2704 ),
2705 (
2706 (1933, 5, 21, 11, 0, 0, 0),
2707 o_fold(
2708 -Offset::hms(9, 30, 0),
2709 -Offset::hms(10, 30, 0),
2710 ),
2711 ),
2712 (
2713 (1933, 5, 21, 11, 59, 59, 0),
2714 o_fold(
2715 -Offset::hms(9, 30, 0),
2716 -Offset::hms(10, 30, 0),
2717 ),
2718 ),
2719 (
2720 (1933, 5, 21, 12, 0, 0, 0),
2721 o_unambiguous(-Offset::hms(10, 30, 0)),
2722 ),
2723 (
2724 (1942, 2, 9, 1, 59, 59, 0),
2725 o_unambiguous(-Offset::hms(10, 30, 0)),
2726 ),
2727 (
2728 (1942, 2, 9, 2, 0, 0, 0),
2729 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2730 ),
2731 (
2732 (1942, 2, 9, 2, 59, 59, 0),
2733 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2734 ),
2735 (
2736 (1942, 2, 9, 3, 0, 0, 0),
2737 o_unambiguous(-Offset::hms(9, 30, 0)),
2738 ),
2739 (
2740 (1945, 8, 14, 13, 29, 59, 0),
2741 o_unambiguous(-Offset::hms(9, 30, 0)),
2742 ),
2743 (
2744 (1945, 8, 14, 13, 30, 0, 0),
2745 o_unambiguous(-Offset::hms(9, 30, 0)),
2746 ),
2747 (
2748 (1945, 8, 14, 13, 30, 1, 0),
2749 o_unambiguous(-Offset::hms(9, 30, 0)),
2750 ),
2751 (
2752 (1945, 9, 30, 0, 59, 59, 0),
2753 o_unambiguous(-Offset::hms(9, 30, 0)),
2754 ),
2755 (
2756 (1945, 9, 30, 1, 0, 0, 0),
2757 o_fold(
2758 -Offset::hms(9, 30, 0),
2759 -Offset::hms(10, 30, 0),
2760 ),
2761 ),
2762 (
2763 (1945, 9, 30, 1, 59, 59, 0),
2764 o_fold(
2765 -Offset::hms(9, 30, 0),
2766 -Offset::hms(10, 30, 0),
2767 ),
2768 ),
2769 (
2770 (1945, 9, 30, 2, 0, 0, 0),
2771 o_unambiguous(-Offset::hms(10, 30, 0)),
2772 ),
2773 (
2774 (1947, 6, 8, 1, 59, 59, 0),
2775 o_unambiguous(-Offset::hms(10, 30, 0)),
2776 ),
2777 (
2778 (1947, 6, 8, 2, 0, 0, 0),
2779 o_gap(-Offset::hms(10, 30, 0), -offset(10)),
2780 ),
2781 (
2782 (1947, 6, 8, 2, 29, 59, 0),
2783 o_gap(-Offset::hms(10, 30, 0), -offset(10)),
2784 ),
2785 ((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)),
2786 ],
2787 ),
2788 ];
2789 for &(tzname, datetimes_to_ambiguous) in tests {
2790 let test_file = TzifTestFile::get(tzname);
2791 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
2792 for &(datetime, ambiguous_kind) in datetimes_to_ambiguous {
2793 let (year, month, day, hour, min, sec, nano) = datetime;
2794 let dt = date(year, month, day).at(hour, min, sec, nano);
2795 let got = tz.to_ambiguous_zoned(dt);
2796 assert_eq!(
2797 got.offset(),
2798 ambiguous_kind,
2799 "\nTZ: {tzname}\ndatetime: \
2800 {year:04}-{month:02}-{day:02}T\
2801 {hour:02}:{min:02}:{sec:02}.{nano:09}",
2802 );
2803 }
2804 }
2805 }
2806
2807 #[cfg(feature = "alloc")]
2808 #[test]
2809 fn time_zone_tzif_to_datetime() {
2810 let o = |hours| offset(hours);
2811 let tests: &[(&str, &[_])] = &[
2812 (
2813 "America/New_York",
2814 &[
2815 ((0, 0), o(-5), "EST", (1969, 12, 31, 19, 0, 0, 0)),
2816 (
2817 (1710052200, 0),
2818 o(-5),
2819 "EST",
2820 (2024, 3, 10, 1, 30, 0, 0),
2821 ),
2822 (
2823 (1710053999, 999_999_999),
2824 o(-5),
2825 "EST",
2826 (2024, 3, 10, 1, 59, 59, 999_999_999),
2827 ),
2828 ((1710054000, 0), o(-4), "EDT", (2024, 3, 10, 3, 0, 0, 0)),
2829 (
2830 (1710055800, 0),
2831 o(-4),
2832 "EDT",
2833 (2024, 3, 10, 3, 30, 0, 0),
2834 ),
2835 ((1730610000, 0), o(-4), "EDT", (2024, 11, 3, 1, 0, 0, 0)),
2836 (
2837 (1730611800, 0),
2838 o(-4),
2839 "EDT",
2840 (2024, 11, 3, 1, 30, 0, 0),
2841 ),
2842 (
2843 (1730613599, 999_999_999),
2844 o(-4),
2845 "EDT",
2846 (2024, 11, 3, 1, 59, 59, 999_999_999),
2847 ),
2848 ((1730613600, 0), o(-5), "EST", (2024, 11, 3, 1, 0, 0, 0)),
2849 (
2850 (1730615400, 0),
2851 o(-5),
2852 "EST",
2853 (2024, 11, 3, 1, 30, 0, 0),
2854 ),
2855 ],
2856 ),
2857 (
2858 "Australia/Tasmania",
2859 &[
2860 ((0, 0), o(11), "AEDT", (1970, 1, 1, 11, 0, 0, 0)),
2861 (
2862 (1728142200, 0),
2863 o(10),
2864 "AEST",
2865 (2024, 10, 6, 1, 30, 0, 0),
2866 ),
2867 (
2868 (1728143999, 999_999_999),
2869 o(10),
2870 "AEST",
2871 (2024, 10, 6, 1, 59, 59, 999_999_999),
2872 ),
2873 (
2874 (1728144000, 0),
2875 o(11),
2876 "AEDT",
2877 (2024, 10, 6, 3, 0, 0, 0),
2878 ),
2879 (
2880 (1728145800, 0),
2881 o(11),
2882 "AEDT",
2883 (2024, 10, 6, 3, 30, 0, 0),
2884 ),
2885 ((1712415600, 0), o(11), "AEDT", (2024, 4, 7, 2, 0, 0, 0)),
2886 (
2887 (1712417400, 0),
2888 o(11),
2889 "AEDT",
2890 (2024, 4, 7, 2, 30, 0, 0),
2891 ),
2892 (
2893 (1712419199, 999_999_999),
2894 o(11),
2895 "AEDT",
2896 (2024, 4, 7, 2, 59, 59, 999_999_999),
2897 ),
2898 ((1712419200, 0), o(10), "AEST", (2024, 4, 7, 2, 0, 0, 0)),
2899 (
2900 (1712421000, 0),
2901 o(10),
2902 "AEST",
2903 (2024, 4, 7, 2, 30, 0, 0),
2904 ),
2905 ],
2906 ),
2907 // Pacific/Honolulu is small eough that we just test every
2908 // possible instant before, at and after each transition.
2909 (
2910 "Pacific/Honolulu",
2911 &[
2912 (
2913 (-2334101315, 0),
2914 -Offset::hms(10, 31, 26),
2915 "LMT",
2916 (1896, 1, 13, 11, 59, 59, 0),
2917 ),
2918 (
2919 (-2334101314, 0),
2920 -Offset::hms(10, 30, 0),
2921 "HST",
2922 (1896, 1, 13, 12, 1, 26, 0),
2923 ),
2924 (
2925 (-2334101313, 0),
2926 -Offset::hms(10, 30, 0),
2927 "HST",
2928 (1896, 1, 13, 12, 1, 27, 0),
2929 ),
2930 (
2931 (-1157283001, 0),
2932 -Offset::hms(10, 30, 0),
2933 "HST",
2934 (1933, 4, 30, 1, 59, 59, 0),
2935 ),
2936 (
2937 (-1157283000, 0),
2938 -Offset::hms(9, 30, 0),
2939 "HDT",
2940 (1933, 4, 30, 3, 0, 0, 0),
2941 ),
2942 (
2943 (-1157282999, 0),
2944 -Offset::hms(9, 30, 0),
2945 "HDT",
2946 (1933, 4, 30, 3, 0, 1, 0),
2947 ),
2948 (
2949 (-1155436201, 0),
2950 -Offset::hms(9, 30, 0),
2951 "HDT",
2952 (1933, 5, 21, 11, 59, 59, 0),
2953 ),
2954 (
2955 (-1155436200, 0),
2956 -Offset::hms(10, 30, 0),
2957 "HST",
2958 (1933, 5, 21, 11, 0, 0, 0),
2959 ),
2960 (
2961 (-1155436199, 0),
2962 -Offset::hms(10, 30, 0),
2963 "HST",
2964 (1933, 5, 21, 11, 0, 1, 0),
2965 ),
2966 (
2967 (-880198201, 0),
2968 -Offset::hms(10, 30, 0),
2969 "HST",
2970 (1942, 2, 9, 1, 59, 59, 0),
2971 ),
2972 (
2973 (-880198200, 0),
2974 -Offset::hms(9, 30, 0),
2975 "HWT",
2976 (1942, 2, 9, 3, 0, 0, 0),
2977 ),
2978 (
2979 (-880198199, 0),
2980 -Offset::hms(9, 30, 0),
2981 "HWT",
2982 (1942, 2, 9, 3, 0, 1, 0),
2983 ),
2984 (
2985 (-769395601, 0),
2986 -Offset::hms(9, 30, 0),
2987 "HWT",
2988 (1945, 8, 14, 13, 29, 59, 0),
2989 ),
2990 (
2991 (-769395600, 0),
2992 -Offset::hms(9, 30, 0),
2993 "HPT",
2994 (1945, 8, 14, 13, 30, 0, 0),
2995 ),
2996 (
2997 (-769395599, 0),
2998 -Offset::hms(9, 30, 0),
2999 "HPT",
3000 (1945, 8, 14, 13, 30, 1, 0),
3001 ),
3002 (
3003 (-765376201, 0),
3004 -Offset::hms(9, 30, 0),
3005 "HPT",
3006 (1945, 9, 30, 1, 59, 59, 0),
3007 ),
3008 (
3009 (-765376200, 0),
3010 -Offset::hms(10, 30, 0),
3011 "HST",
3012 (1945, 9, 30, 1, 0, 0, 0),
3013 ),
3014 (
3015 (-765376199, 0),
3016 -Offset::hms(10, 30, 0),
3017 "HST",
3018 (1945, 9, 30, 1, 0, 1, 0),
3019 ),
3020 (
3021 (-712150201, 0),
3022 -Offset::hms(10, 30, 0),
3023 "HST",
3024 (1947, 6, 8, 1, 59, 59, 0),
3025 ),
3026 // At this point, we hit the last transition and the POSIX
3027 // TZ string takes over.
3028 (
3029 (-712150200, 0),
3030 -Offset::hms(10, 0, 0),
3031 "HST",
3032 (1947, 6, 8, 2, 30, 0, 0),
3033 ),
3034 (
3035 (-712150199, 0),
3036 -Offset::hms(10, 0, 0),
3037 "HST",
3038 (1947, 6, 8, 2, 30, 1, 0),
3039 ),
3040 ],
3041 ),
3042 // This time zone has an interesting transition where it jumps
3043 // backwards a full day at 1867-10-19T15:30:00.
3044 (
3045 "America/Sitka",
3046 &[
3047 ((0, 0), o(-8), "PST", (1969, 12, 31, 16, 0, 0, 0)),
3048 (
3049 (-377705023201, 0),
3050 Offset::hms(14, 58, 47),
3051 "LMT",
3052 (-9999, 1, 2, 16, 58, 46, 0),
3053 ),
3054 (
3055 (-3225223728, 0),
3056 Offset::hms(14, 58, 47),
3057 "LMT",
3058 (1867, 10, 19, 15, 29, 59, 0),
3059 ),
3060 // Notice the 24 hour time jump backwards a whole day!
3061 (
3062 (-3225223727, 0),
3063 -Offset::hms(9, 1, 13),
3064 "LMT",
3065 (1867, 10, 18, 15, 30, 0, 0),
3066 ),
3067 (
3068 (-3225223726, 0),
3069 -Offset::hms(9, 1, 13),
3070 "LMT",
3071 (1867, 10, 18, 15, 30, 1, 0),
3072 ),
3073 ],
3074 ),
3075 ];
3076 for &(tzname, timestamps_to_datetimes) in tests {
3077 let test_file = TzifTestFile::get(tzname);
3078 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3079 for &((unix_sec, unix_nano), offset, abbrev, datetime) in
3080 timestamps_to_datetimes
3081 {
3082 let (year, month, day, hour, min, sec, nano) = datetime;
3083 let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap();
3084 let info = tz.to_offset_info(timestamp);
3085 assert_eq!(
3086 info.offset(),
3087 offset,
3088 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3089 );
3090 assert_eq!(
3091 info.abbreviation(),
3092 abbrev,
3093 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3094 );
3095 assert_eq!(
3096 info.offset().to_datetime(timestamp),
3097 date(year, month, day).at(hour, min, sec, nano),
3098 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3099 );
3100 }
3101 }
3102 }
3103
3104 #[cfg(feature = "alloc")]
3105 #[test]
3106 fn time_zone_posix_to_ambiguous_timestamp() {
3107 let tests: &[(&str, &[_])] = &[
3108 // America/New_York, but a utopia in which DST is abolished.
3109 (
3110 "EST5",
3111 &[
3112 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3113 ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)),
3114 ],
3115 ),
3116 // The standard DST rule for America/New_York.
3117 (
3118 "EST5EDT,M3.2.0,M11.1.0",
3119 &[
3120 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3121 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
3122 ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)),
3123 ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)),
3124 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)),
3125 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)),
3126 ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)),
3127 ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)),
3128 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
3129 ],
3130 ),
3131 // A bit of a nonsensical America/New_York that has DST, but whose
3132 // offset is equivalent to standard time. Having the same offset
3133 // means there's never any ambiguity.
3134 (
3135 "EST5EDT5,M3.2.0,M11.1.0",
3136 &[
3137 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3138 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
3139 ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)),
3140 ((2024, 3, 10, 2, 59, 59, 999_999_999), unambiguous(-5)),
3141 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-5)),
3142 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-5)),
3143 ((2024, 11, 3, 1, 0, 0, 0), unambiguous(-5)),
3144 ((2024, 11, 3, 1, 59, 59, 999_999_999), unambiguous(-5)),
3145 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
3146 ],
3147 ),
3148 // This is Europe/Dublin's rule. It's interesting because its
3149 // DST is an offset behind standard time. (DST is usually one hour
3150 // ahead of standard time.)
3151 (
3152 "IST-1GMT0,M10.5.0,M3.5.0/1",
3153 &[
3154 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
3155 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
3156 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)),
3157 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)),
3158 ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)),
3159 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)),
3160 ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)),
3161 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)),
3162 ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)),
3163 ],
3164 ),
3165 // This is Australia/Tasmania's rule. We chose this because it's
3166 // in the southern hemisphere where DST still skips ahead one hour,
3167 // but it usually starts in the fall and ends in the spring.
3168 (
3169 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3170 &[
3171 ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)),
3172 ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)),
3173 ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)),
3174 ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)),
3175 ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)),
3176 ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)),
3177 ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)),
3178 ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)),
3179 ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)),
3180 ],
3181 ),
3182 // This is Antarctica/Troll's rule. We chose this one because its
3183 // DST transition is 2 hours instead of the standard 1 hour. This
3184 // means gaps and folds are twice as long as they usually are. And
3185 // it means there are 22 hour and 26 hour days, respectively. Wow!
3186 (
3187 "<+00>0<+02>-2,M3.5.0/1,M10.5.0/3",
3188 &[
3189 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
3190 // test the gap
3191 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
3192 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)),
3193 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)),
3194 // still in the gap!
3195 ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)),
3196 ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)),
3197 // finally out
3198 ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)),
3199 // test the fold
3200 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)),
3201 ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)),
3202 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)),
3203 // still in the fold!
3204 ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)),
3205 ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)),
3206 // finally out
3207 ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)),
3208 ],
3209 ),
3210 // This is America/St_Johns' rule, which has an offset with
3211 // non-zero minutes *and* a DST transition rule. (Indian Standard
3212 // Time is the one I'm more familiar with, but it turns out IST
3213 // does not have DST!)
3214 (
3215 "NST3:30NDT,M3.2.0,M11.1.0",
3216 &[
3217 (
3218 (1969, 12, 31, 20, 30, 0, 0),
3219 o_unambiguous(-Offset::hms(3, 30, 0)),
3220 ),
3221 (
3222 (2024, 3, 10, 1, 59, 59, 999_999_999),
3223 o_unambiguous(-Offset::hms(3, 30, 0)),
3224 ),
3225 (
3226 (2024, 3, 10, 2, 0, 0, 0),
3227 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
3228 ),
3229 (
3230 (2024, 3, 10, 2, 59, 59, 999_999_999),
3231 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
3232 ),
3233 (
3234 (2024, 3, 10, 3, 0, 0, 0),
3235 o_unambiguous(-Offset::hms(2, 30, 0)),
3236 ),
3237 (
3238 (2024, 11, 3, 0, 59, 59, 999_999_999),
3239 o_unambiguous(-Offset::hms(2, 30, 0)),
3240 ),
3241 (
3242 (2024, 11, 3, 1, 0, 0, 0),
3243 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
3244 ),
3245 (
3246 (2024, 11, 3, 1, 59, 59, 999_999_999),
3247 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
3248 ),
3249 (
3250 (2024, 11, 3, 2, 0, 0, 0),
3251 o_unambiguous(-Offset::hms(3, 30, 0)),
3252 ),
3253 ],
3254 ),
3255 ];
3256 for &(posix_tz, datetimes_to_ambiguous) in tests {
3257 let tz = TimeZone::posix(posix_tz).unwrap();
3258 for &(datetime, ambiguous_kind) in datetimes_to_ambiguous {
3259 let (year, month, day, hour, min, sec, nano) = datetime;
3260 let dt = date(year, month, day).at(hour, min, sec, nano);
3261 let got = tz.to_ambiguous_zoned(dt);
3262 assert_eq!(
3263 got.offset(),
3264 ambiguous_kind,
3265 "\nTZ: {posix_tz}\ndatetime: \
3266 {year:04}-{month:02}-{day:02}T\
3267 {hour:02}:{min:02}:{sec:02}.{nano:09}",
3268 );
3269 }
3270 }
3271 }
3272
3273 #[cfg(feature = "alloc")]
3274 #[test]
3275 fn time_zone_posix_to_datetime() {
3276 let o = |hours| offset(hours);
3277 let tests: &[(&str, &[_])] = &[
3278 ("EST5", &[((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0))]),
3279 (
3280 // From America/New_York
3281 "EST5EDT,M3.2.0,M11.1.0",
3282 &[
3283 ((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0)),
3284 ((1710052200, 0), o(-5), (2024, 3, 10, 1, 30, 0, 0)),
3285 (
3286 (1710053999, 999_999_999),
3287 o(-5),
3288 (2024, 3, 10, 1, 59, 59, 999_999_999),
3289 ),
3290 ((1710054000, 0), o(-4), (2024, 3, 10, 3, 0, 0, 0)),
3291 ((1710055800, 0), o(-4), (2024, 3, 10, 3, 30, 0, 0)),
3292 ((1730610000, 0), o(-4), (2024, 11, 3, 1, 0, 0, 0)),
3293 ((1730611800, 0), o(-4), (2024, 11, 3, 1, 30, 0, 0)),
3294 (
3295 (1730613599, 999_999_999),
3296 o(-4),
3297 (2024, 11, 3, 1, 59, 59, 999_999_999),
3298 ),
3299 ((1730613600, 0), o(-5), (2024, 11, 3, 1, 0, 0, 0)),
3300 ((1730615400, 0), o(-5), (2024, 11, 3, 1, 30, 0, 0)),
3301 ],
3302 ),
3303 (
3304 // From Australia/Tasmania
3305 //
3306 // We chose this because it's a time zone in the southern
3307 // hemisphere with DST. Unlike the northern hemisphere, its DST
3308 // starts in the fall and ends in the spring. In the northern
3309 // hemisphere, we typically start DST in the spring and end it
3310 // in the fall.
3311 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3312 &[
3313 ((0, 0), o(11), (1970, 1, 1, 11, 0, 0, 0)),
3314 ((1728142200, 0), o(10), (2024, 10, 6, 1, 30, 0, 0)),
3315 (
3316 (1728143999, 999_999_999),
3317 o(10),
3318 (2024, 10, 6, 1, 59, 59, 999_999_999),
3319 ),
3320 ((1728144000, 0), o(11), (2024, 10, 6, 3, 0, 0, 0)),
3321 ((1728145800, 0), o(11), (2024, 10, 6, 3, 30, 0, 0)),
3322 ((1712415600, 0), o(11), (2024, 4, 7, 2, 0, 0, 0)),
3323 ((1712417400, 0), o(11), (2024, 4, 7, 2, 30, 0, 0)),
3324 (
3325 (1712419199, 999_999_999),
3326 o(11),
3327 (2024, 4, 7, 2, 59, 59, 999_999_999),
3328 ),
3329 ((1712419200, 0), o(10), (2024, 4, 7, 2, 0, 0, 0)),
3330 ((1712421000, 0), o(10), (2024, 4, 7, 2, 30, 0, 0)),
3331 ],
3332 ),
3333 (
3334 // Uses the maximum possible offset. A sloppy read of POSIX
3335 // seems to indicate the maximum offset is 24:59:59, but since
3336 // DST defaults to 1 hour ahead of standard time, it's possible
3337 // to use 24:59:59 for standard time, omit the DST offset, and
3338 // thus get a DST offset of 25:59:59.
3339 "XXX-24:59:59YYY,M3.2.0,M11.1.0",
3340 &[
3341 // 2024-01-05T00:00:00+00
3342 (
3343 (1704412800, 0),
3344 Offset::hms(24, 59, 59),
3345 (2024, 1, 6, 0, 59, 59, 0),
3346 ),
3347 // 2024-06-05T00:00:00+00 (DST)
3348 (
3349 (1717545600, 0),
3350 Offset::hms(25, 59, 59),
3351 (2024, 6, 6, 1, 59, 59, 0),
3352 ),
3353 ],
3354 ),
3355 ];
3356 for &(posix_tz, timestamps_to_datetimes) in tests {
3357 let tz = TimeZone::posix(posix_tz).unwrap();
3358 for &((unix_sec, unix_nano), offset, datetime) in
3359 timestamps_to_datetimes
3360 {
3361 let (year, month, day, hour, min, sec, nano) = datetime;
3362 let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap();
3363 assert_eq!(
3364 tz.to_offset(timestamp),
3365 offset,
3366 "\ntimestamp({unix_sec}, {unix_nano})",
3367 );
3368 assert_eq!(
3369 tz.to_datetime(timestamp),
3370 date(year, month, day).at(hour, min, sec, nano),
3371 "\ntimestamp({unix_sec}, {unix_nano})",
3372 );
3373 }
3374 }
3375 }
3376
3377 #[test]
3378 fn time_zone_fixed_to_datetime() {
3379 let tz = offset(-5).to_time_zone();
3380 let unix_epoch = Timestamp::new(0, 0).unwrap();
3381 assert_eq!(
3382 tz.to_datetime(unix_epoch),
3383 date(1969, 12, 31).at(19, 0, 0, 0),
3384 );
3385
3386 let tz = Offset::from_seconds(93_599).unwrap().to_time_zone();
3387 let timestamp = Timestamp::new(253402207200, 999_999_999).unwrap();
3388 assert_eq!(
3389 tz.to_datetime(timestamp),
3390 date(9999, 12, 31).at(23, 59, 59, 999_999_999),
3391 );
3392
3393 let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone();
3394 let timestamp = Timestamp::new(-377705023201, 0).unwrap();
3395 assert_eq!(
3396 tz.to_datetime(timestamp),
3397 date(-9999, 1, 1).at(0, 0, 0, 0),
3398 );
3399 }
3400
3401 #[test]
3402 fn time_zone_fixed_to_timestamp() {
3403 let tz = offset(-5).to_time_zone();
3404 let dt = date(1969, 12, 31).at(19, 0, 0, 0);
3405 assert_eq!(
3406 tz.to_zoned(dt).unwrap().timestamp(),
3407 Timestamp::new(0, 0).unwrap()
3408 );
3409
3410 let tz = Offset::from_seconds(93_599).unwrap().to_time_zone();
3411 let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999);
3412 assert_eq!(
3413 tz.to_zoned(dt).unwrap().timestamp(),
3414 Timestamp::new(253402207200, 999_999_999).unwrap(),
3415 );
3416 let tz = Offset::from_seconds(93_598).unwrap().to_time_zone();
3417 assert!(tz.to_zoned(dt).is_err());
3418
3419 let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone();
3420 let dt = date(-9999, 1, 1).at(0, 0, 0, 0);
3421 assert_eq!(
3422 tz.to_zoned(dt).unwrap().timestamp(),
3423 Timestamp::new(-377705023201, 0).unwrap(),
3424 );
3425 let tz = Offset::from_seconds(-93_598).unwrap().to_time_zone();
3426 assert!(tz.to_zoned(dt).is_err());
3427 }
3428
3429 #[cfg(feature = "alloc")]
3430 #[test]
3431 fn time_zone_tzif_previous_transition() {
3432 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3433 (
3434 "UTC",
3435 &[
3436 ("1969-12-31T19Z", None),
3437 ("2024-03-10T02Z", None),
3438 ("-009999-12-01 00Z", None),
3439 ("9999-12-01 00Z", None),
3440 ],
3441 ),
3442 (
3443 "America/New_York",
3444 &[
3445 ("2024-03-10 08Z", Some("2024-03-10 07Z")),
3446 ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")),
3447 ("2024-03-10 07Z", Some("2023-11-05 06Z")),
3448 ("2023-11-05 06Z", Some("2023-03-12 07Z")),
3449 ("-009999-01-31 00Z", None),
3450 ("9999-12-01 00Z", Some("9999-11-07 06Z")),
3451 // While at present we have "fat" TZif files for our
3452 // testdata, it's conceivable they could be swapped to
3453 // "slim." In which case, the tests above will mostly just
3454 // be testing POSIX TZ strings and not the TZif logic. So
3455 // below, we include times that will be in slim (i.e.,
3456 // historical times the precede the current DST rule).
3457 ("1969-12-31 19Z", Some("1969-10-26 06Z")),
3458 ("2000-04-02 08Z", Some("2000-04-02 07Z")),
3459 ("2000-04-02 07:00:00.000000001Z", Some("2000-04-02 07Z")),
3460 ("2000-04-02 07Z", Some("1999-10-31 06Z")),
3461 ("1999-10-31 06Z", Some("1999-04-04 07Z")),
3462 ],
3463 ),
3464 (
3465 "Australia/Tasmania",
3466 &[
3467 ("2010-04-03 17Z", Some("2010-04-03 16Z")),
3468 ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")),
3469 ("2010-04-03 16Z", Some("2009-10-03 16Z")),
3470 ("2009-10-03 16Z", Some("2009-04-04 16Z")),
3471 ("-009999-01-31 00Z", None),
3472 ("9999-12-01 00Z", Some("9999-10-02 16Z")),
3473 // Tests for historical data from tzdb. No POSIX TZ.
3474 ("2000-03-25 17Z", Some("2000-03-25 16Z")),
3475 ("2000-03-25 16:00:00.000000001Z", Some("2000-03-25 16Z")),
3476 ("2000-03-25 16Z", Some("1999-10-02 16Z")),
3477 ("1999-10-02 16Z", Some("1999-03-27 16Z")),
3478 ],
3479 ),
3480 // This is Europe/Dublin's rule. It's interesting because its
3481 // DST is an offset behind standard time. (DST is usually one hour
3482 // ahead of standard time.)
3483 (
3484 "Europe/Dublin",
3485 &[
3486 ("2010-03-28 02Z", Some("2010-03-28 01Z")),
3487 ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")),
3488 ("2010-03-28 01Z", Some("2009-10-25 01Z")),
3489 ("2009-10-25 01Z", Some("2009-03-29 01Z")),
3490 ("-009999-01-31 00Z", None),
3491 ("9999-12-01 00Z", Some("9999-10-31 01Z")),
3492 // Tests for historical data from tzdb. No POSIX TZ.
3493 ("1990-03-25 02Z", Some("1990-03-25 01Z")),
3494 ("1990-03-25 01:00:00.000000001Z", Some("1990-03-25 01Z")),
3495 ("1990-03-25 01Z", Some("1989-10-29 01Z")),
3496 ("1989-10-25 01Z", Some("1989-03-26 01Z")),
3497 ],
3498 ),
3499 (
3500 // Sao Paulo eliminated DST in 2019, so the previous transition
3501 // from 2024 is several years back.
3502 "America/Sao_Paulo",
3503 &[("2024-03-10 08Z", Some("2019-02-17 02Z"))],
3504 ),
3505 ];
3506 for &(tzname, prev_trans) in tests {
3507 if tzname != "America/Sao_Paulo" {
3508 continue;
3509 }
3510 let test_file = TzifTestFile::get(tzname);
3511 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3512 for (given, expected) in prev_trans {
3513 let given: Timestamp = given.parse().unwrap();
3514 let expected =
3515 expected.map(|s| s.parse::<Timestamp>().unwrap());
3516 let got = tz.previous_transition(given).map(|t| t.timestamp());
3517 assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}");
3518 }
3519 }
3520 }
3521
3522 #[cfg(feature = "alloc")]
3523 #[test]
3524 fn time_zone_tzif_next_transition() {
3525 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3526 (
3527 "UTC",
3528 &[
3529 ("1969-12-31T19Z", None),
3530 ("2024-03-10T02Z", None),
3531 ("-009999-12-01 00Z", None),
3532 ("9999-12-01 00Z", None),
3533 ],
3534 ),
3535 (
3536 "America/New_York",
3537 &[
3538 ("2024-03-10 06Z", Some("2024-03-10 07Z")),
3539 ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")),
3540 ("2024-03-10 07Z", Some("2024-11-03 06Z")),
3541 ("2024-11-03 06Z", Some("2025-03-09 07Z")),
3542 ("-009999-12-01 00Z", Some("1883-11-18 17Z")),
3543 ("9999-12-01 00Z", None),
3544 // While at present we have "fat" TZif files for our
3545 // testdata, it's conceivable they could be swapped to
3546 // "slim." In which case, the tests above will mostly just
3547 // be testing POSIX TZ strings and not the TZif logic. So
3548 // below, we include times that will be in slim (i.e.,
3549 // historical times the precede the current DST rule).
3550 ("1969-12-31 19Z", Some("1970-04-26 07Z")),
3551 ("2000-04-02 06Z", Some("2000-04-02 07Z")),
3552 ("2000-04-02 06:59:59.999999999Z", Some("2000-04-02 07Z")),
3553 ("2000-04-02 07Z", Some("2000-10-29 06Z")),
3554 ("2000-10-29 06Z", Some("2001-04-01 07Z")),
3555 ],
3556 ),
3557 (
3558 "Australia/Tasmania",
3559 &[
3560 ("2010-04-03 15Z", Some("2010-04-03 16Z")),
3561 ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")),
3562 ("2010-04-03 16Z", Some("2010-10-02 16Z")),
3563 ("2010-10-02 16Z", Some("2011-04-02 16Z")),
3564 ("-009999-12-01 00Z", Some("1895-08-31 14:10:44Z")),
3565 ("9999-12-01 00Z", None),
3566 // Tests for historical data from tzdb. No POSIX TZ.
3567 ("2000-03-25 15Z", Some("2000-03-25 16Z")),
3568 ("2000-03-25 15:59:59.999999999Z", Some("2000-03-25 16Z")),
3569 ("2000-03-25 16Z", Some("2000-08-26 16Z")),
3570 ("2000-08-26 16Z", Some("2001-03-24 16Z")),
3571 ],
3572 ),
3573 (
3574 "Europe/Dublin",
3575 &[
3576 ("2010-03-28 00Z", Some("2010-03-28 01Z")),
3577 ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")),
3578 ("2010-03-28 01Z", Some("2010-10-31 01Z")),
3579 ("2010-10-31 01Z", Some("2011-03-27 01Z")),
3580 ("-009999-12-01 00Z", Some("1880-08-02 00:25:21Z")),
3581 ("9999-12-01 00Z", None),
3582 // Tests for historical data from tzdb. No POSIX TZ.
3583 ("1990-03-25 00Z", Some("1990-03-25 01Z")),
3584 ("1990-03-25 00:59:59.999999999Z", Some("1990-03-25 01Z")),
3585 ("1990-03-25 01Z", Some("1990-10-28 01Z")),
3586 ("1990-10-28 01Z", Some("1991-03-31 01Z")),
3587 ],
3588 ),
3589 (
3590 // Sao Paulo eliminated DST in 2019, so the next transition
3591 // from 2024 no longer exists.
3592 "America/Sao_Paulo",
3593 &[("2024-03-10 08Z", None)],
3594 ),
3595 ];
3596 for &(tzname, next_trans) in tests {
3597 let test_file = TzifTestFile::get(tzname);
3598 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3599 for (given, expected) in next_trans {
3600 let given: Timestamp = given.parse().unwrap();
3601 let expected =
3602 expected.map(|s| s.parse::<Timestamp>().unwrap());
3603 let got = tz.next_transition(given).map(|t| t.timestamp());
3604 assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}");
3605 }
3606 }
3607 }
3608
3609 #[cfg(feature = "alloc")]
3610 #[test]
3611 fn time_zone_posix_previous_transition() {
3612 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3613 // America/New_York, but a utopia in which DST is abolished. There
3614 // are no time zone transitions, so next_transition always returns
3615 // None.
3616 (
3617 "EST5",
3618 &[
3619 ("1969-12-31T19Z", None),
3620 ("2024-03-10T02Z", None),
3621 ("-009999-12-01 00Z", None),
3622 ("9999-12-01 00Z", None),
3623 ],
3624 ),
3625 // The standard DST rule for America/New_York.
3626 (
3627 "EST5EDT,M3.2.0,M11.1.0",
3628 &[
3629 ("1969-12-31 19Z", Some("1969-11-02 06Z")),
3630 ("2024-03-10 08Z", Some("2024-03-10 07Z")),
3631 ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")),
3632 ("2024-03-10 07Z", Some("2023-11-05 06Z")),
3633 ("2023-11-05 06Z", Some("2023-03-12 07Z")),
3634 ("-009999-01-31 00Z", None),
3635 ("9999-12-01 00Z", Some("9999-11-07 06Z")),
3636 ],
3637 ),
3638 (
3639 // From Australia/Tasmania
3640 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3641 &[
3642 ("2010-04-03 17Z", Some("2010-04-03 16Z")),
3643 ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")),
3644 ("2010-04-03 16Z", Some("2009-10-03 16Z")),
3645 ("2009-10-03 16Z", Some("2009-04-04 16Z")),
3646 ("-009999-01-31 00Z", None),
3647 ("9999-12-01 00Z", Some("9999-10-02 16Z")),
3648 ],
3649 ),
3650 // This is Europe/Dublin's rule. It's interesting because its
3651 // DST is an offset behind standard time. (DST is usually one hour
3652 // ahead of standard time.)
3653 (
3654 "IST-1GMT0,M10.5.0,M3.5.0/1",
3655 &[
3656 ("2010-03-28 02Z", Some("2010-03-28 01Z")),
3657 ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")),
3658 ("2010-03-28 01Z", Some("2009-10-25 01Z")),
3659 ("2009-10-25 01Z", Some("2009-03-29 01Z")),
3660 ("-009999-01-31 00Z", None),
3661 ("9999-12-01 00Z", Some("9999-10-31 01Z")),
3662 ],
3663 ),
3664 ];
3665 for &(posix_tz, prev_trans) in tests {
3666 let tz = TimeZone::posix(posix_tz).unwrap();
3667 for (given, expected) in prev_trans {
3668 let given: Timestamp = given.parse().unwrap();
3669 let expected =
3670 expected.map(|s| s.parse::<Timestamp>().unwrap());
3671 let got = tz.previous_transition(given).map(|t| t.timestamp());
3672 assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}");
3673 }
3674 }
3675 }
3676
3677 #[cfg(feature = "alloc")]
3678 #[test]
3679 fn time_zone_posix_next_transition() {
3680 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3681 // America/New_York, but a utopia in which DST is abolished. There
3682 // are no time zone transitions, so next_transition always returns
3683 // None.
3684 (
3685 "EST5",
3686 &[
3687 ("1969-12-31T19Z", None),
3688 ("2024-03-10T02Z", None),
3689 ("-009999-12-01 00Z", None),
3690 ("9999-12-01 00Z", None),
3691 ],
3692 ),
3693 // The standard DST rule for America/New_York.
3694 (
3695 "EST5EDT,M3.2.0,M11.1.0",
3696 &[
3697 ("1969-12-31 19Z", Some("1970-03-08 07Z")),
3698 ("2024-03-10 06Z", Some("2024-03-10 07Z")),
3699 ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")),
3700 ("2024-03-10 07Z", Some("2024-11-03 06Z")),
3701 ("2024-11-03 06Z", Some("2025-03-09 07Z")),
3702 ("-009999-12-01 00Z", Some("-009998-03-10 07Z")),
3703 ("9999-12-01 00Z", None),
3704 ],
3705 ),
3706 (
3707 // From Australia/Tasmania
3708 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3709 &[
3710 ("2010-04-03 15Z", Some("2010-04-03 16Z")),
3711 ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")),
3712 ("2010-04-03 16Z", Some("2010-10-02 16Z")),
3713 ("2010-10-02 16Z", Some("2011-04-02 16Z")),
3714 ("-009999-12-01 00Z", Some("-009998-04-06 16Z")),
3715 ("9999-12-01 00Z", None),
3716 ],
3717 ),
3718 // This is Europe/Dublin's rule. It's interesting because its
3719 // DST is an offset behind standard time. (DST is usually one hour
3720 // ahead of standard time.)
3721 (
3722 "IST-1GMT0,M10.5.0,M3.5.0/1",
3723 &[
3724 ("2010-03-28 00Z", Some("2010-03-28 01Z")),
3725 ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")),
3726 ("2010-03-28 01Z", Some("2010-10-31 01Z")),
3727 ("2010-10-31 01Z", Some("2011-03-27 01Z")),
3728 ("-009999-12-01 00Z", Some("-009998-03-31 01Z")),
3729 ("9999-12-01 00Z", None),
3730 ],
3731 ),
3732 ];
3733 for &(posix_tz, next_trans) in tests {
3734 let tz = TimeZone::posix(posix_tz).unwrap();
3735 for (given, expected) in next_trans {
3736 let given: Timestamp = given.parse().unwrap();
3737 let expected =
3738 expected.map(|s| s.parse::<Timestamp>().unwrap());
3739 let got = tz.next_transition(given).map(|t| t.timestamp());
3740 assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}");
3741 }
3742 }
3743 }
3744
3745 /// This tests that the size of a time zone is kept at a single word.
3746 ///
3747 /// This is important because every jiff::Zoned has a TimeZone inside of
3748 /// it, and we want to keep its size as small as we can.
3749 #[test]
3750 fn time_zone_size() {
3751 #[cfg(feature = "alloc")]
3752 {
3753 let word = core::mem::size_of::<usize>();
3754 assert_eq!(word, core::mem::size_of::<TimeZone>());
3755 }
3756 #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
3757 {
3758 #[cfg(debug_assertions)]
3759 {
3760 assert_eq!(8, core::mem::size_of::<TimeZone>());
3761 }
3762 #[cfg(not(debug_assertions))]
3763 {
3764 // This asserts the same value as the alloc value above, but
3765 // it wasn't always this way, which is why it's written out
3766 // separately. Moreover, in theory, I'd be open to regressing
3767 // this value if it led to an improvement in alloc-mode. But
3768 // more likely, it would be nice to decrease this size in
3769 // non-alloc modes.
3770 assert_eq!(8, core::mem::size_of::<TimeZone>());
3771 }
3772 }
3773 }
3774
3775 /// This tests a few other cases for `TimeZone::to_offset` that
3776 /// probably aren't worth showing in doctest examples.
3777 #[test]
3778 fn time_zone_to_offset() {
3779 let ts = Timestamp::from_second(123456789).unwrap();
3780
3781 let tz = TimeZone::fixed(offset(-5));
3782 let info = tz.to_offset_info(ts);
3783 assert_eq!(info.offset(), offset(-5));
3784 assert_eq!(info.dst(), Dst::No);
3785 assert_eq!(info.abbreviation(), "-05");
3786
3787 let tz = TimeZone::fixed(offset(5));
3788 let info = tz.to_offset_info(ts);
3789 assert_eq!(info.offset(), offset(5));
3790 assert_eq!(info.dst(), Dst::No);
3791 assert_eq!(info.abbreviation(), "+05");
3792
3793 let tz = TimeZone::fixed(offset(-12));
3794 let info = tz.to_offset_info(ts);
3795 assert_eq!(info.offset(), offset(-12));
3796 assert_eq!(info.dst(), Dst::No);
3797 assert_eq!(info.abbreviation(), "-12");
3798
3799 let tz = TimeZone::fixed(offset(12));
3800 let info = tz.to_offset_info(ts);
3801 assert_eq!(info.offset(), offset(12));
3802 assert_eq!(info.dst(), Dst::No);
3803 assert_eq!(info.abbreviation(), "+12");
3804
3805 let tz = TimeZone::fixed(offset(0));
3806 let info = tz.to_offset_info(ts);
3807 assert_eq!(info.offset(), offset(0));
3808 assert_eq!(info.dst(), Dst::No);
3809 assert_eq!(info.abbreviation(), "UTC");
3810 }
3811
3812 /// This tests a few other cases for `TimeZone::to_fixed_offset` that
3813 /// probably aren't worth showing in doctest examples.
3814 #[test]
3815 fn time_zone_to_fixed_offset() {
3816 let tz = TimeZone::UTC;
3817 assert_eq!(tz.to_fixed_offset().unwrap(), Offset::UTC);
3818
3819 let offset = Offset::from_hours(1).unwrap();
3820 let tz = TimeZone::fixed(offset);
3821 assert_eq!(tz.to_fixed_offset().unwrap(), offset);
3822
3823 #[cfg(feature = "alloc")]
3824 {
3825 let tz = TimeZone::posix("EST5").unwrap();
3826 assert!(tz.to_fixed_offset().is_err());
3827
3828 let test_file = TzifTestFile::get("America/New_York");
3829 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3830 assert!(tz.to_fixed_offset().is_err());
3831 }
3832 }
3833
3834 /// This tests that `TimeZone::following` correctly returns a final time
3835 /// zone transition.
3836 #[cfg(feature = "alloc")]
3837 #[test]
3838 fn time_zone_following_boa_vista() {
3839 use alloc::{vec, vec::Vec};
3840
3841 let test_file = TzifTestFile::get("America/Boa_Vista");
3842 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3843 let last4: Vec<Timestamp> = vec![
3844 "1999-10-03T04Z".parse().unwrap(),
3845 "2000-02-27T03Z".parse().unwrap(),
3846 "2000-10-08T04Z".parse().unwrap(),
3847 "2000-10-15T03Z".parse().unwrap(),
3848 ];
3849
3850 let start: Timestamp = "2001-01-01T00Z".parse().unwrap();
3851 let mut transitions: Vec<Timestamp> =
3852 tz.preceding(start).take(4).map(|t| t.timestamp()).collect();
3853 transitions.reverse();
3854 assert_eq!(transitions, last4);
3855
3856 let start: Timestamp = "1990-01-01T00Z".parse().unwrap();
3857 let transitions: Vec<Timestamp> =
3858 tz.following(start).map(|t| t.timestamp()).collect();
3859 // The regression here was that the 2000-10-15 transition wasn't
3860 // being found here, despite the fact that it existed and was found
3861 // by `preceding`.
3862 assert_eq!(transitions, last4);
3863 }
3864
3865 #[cfg(feature = "alloc")]
3866 #[test]
3867 fn regression_tzif_parse_panic() {
3868 _ = TimeZone::tzif(
3869 "",
3870 &[
3871 84, 90, 105, 102, 6, 0, 5, 35, 84, 10, 77, 0, 0, 0, 84, 82,
3872 105, 102, 0, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3873 0, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 82, 28, 77, 0, 0, 90, 105,
3874 78, 0, 0, 0, 0, 0, 0, 0, 84, 90, 105, 102, 0, 0, 5, 0, 84, 90,
3875 105, 84, 77, 10, 0, 0, 0, 15, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3876 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 82, 0, 64, 1, 0,
3877 0, 2, 0, 0, 0, 0, 0, 0, 126, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0,
3878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0,
3879 0, 160, 109, 1, 0, 90, 105, 102, 0, 0, 5, 0, 87, 90, 105, 84,
3880 77, 10, 0, 0, 0, 0, 0, 122, 102, 105, 0, 0, 0, 0, 0, 0, 0, 0,
3881 2, 0, 0, 0, 0, 0, 0, 5, 82, 0, 0, 0, 0, 0, 2, 0, 0, 90, 105,
3882 102, 0, 0, 5, 0, 84, 90, 105, 84, 77, 10, 0, 0, 0, 102, 0, 0,
3883 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 90, 195, 190, 10, 84,
3884 90, 77, 49, 84, 90, 105, 102, 49, 44, 74, 51, 44, 50, 10,
3885 ],
3886 );
3887 }
3888
3889 /// A regression test where a TZ lookup for the minimum civil datetime
3890 /// resulted in a panic in the TZif handling.
3891 #[cfg(feature = "alloc")]
3892 #[test]
3893 fn regression_tz_lookup_datetime_min() {
3894 use alloc::string::ToString;
3895
3896 let test_file = TzifTestFile::get("America/Boa_Vista");
3897 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3898 let err = tz.to_timestamp(DateTime::MIN).unwrap_err();
3899 assert_eq!(
3900 err.to_string(),
3901 "converting datetime with time zone offset `-04:02:40` to timestamp overflowed: parameter 'Unix timestamp seconds' is not in the required range of -377705023201..=253402207200",
3902 );
3903 }
3904}