1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
//! Module that holds Coproduct data structures, traits, and implementations
//!
//! Think of "Coproduct" as ad-hoc enums; allowing you to do something like this
//!
//! ```
//! #[macro_use]
//! extern crate frunk;
//!
//! # fn main() {
//! // For simplicity, assign our Coproduct type to a type alias
//! // This is purely optional.
//! type I32Bool = Coprod!(i32, bool);
//! // Inject things into our Coproduct type
//! let co1 = I32Bool::inject(3);
//! let co2 = I32Bool::inject(true);
//!
//! // Getting stuff
//! let get_from_1a: Option<&i32> = co1.get();
//! let get_from_1b: Option<&bool> = co1.get();
//! assert_eq!(get_from_1a, Some(&3));
//! assert_eq!(get_from_1b, None);
//!
//! let get_from_2a: Option<&i32> = co2.get();
//! let get_from_2b: Option<&bool> = co2.get();
//! assert_eq!(get_from_2a, None);
//! assert_eq!(get_from_2b, Some(&true));
//!
//! // *Taking* stuff (by value)
//! let take_from_1a: Option<i32> = co1.take();
//! assert_eq!(take_from_1a, Some(3));
//!
//! // Or with a Result
//! let uninject_from_1a: Result<i32, _> = co1.uninject();
//! let uninject_from_1b: Result<bool, _> = co1.uninject();
//! assert_eq!(uninject_from_1a, Ok(3));
//! assert!(uninject_from_1b.is_err());
//! # }
//! ```
//!
//! Or, if you want to "fold" over all possible values of a coproduct
//!
//! ```
//! # #[macro_use] extern crate frunk;
//! # fn main() {
//! # type I32Bool = Coprod!(i32, bool);
//! # let co1 = I32Bool::inject(3);
//! # let co2 = I32Bool::inject(true);
//! // In the below, we use unreachable!() to make it obvious hat we know what type of
//! // item is inside our coproducts co1 and co2 but in real life, you should be writing
//! // complete functions for all the cases when folding coproducts
//! //
//! // to_ref borrows every item so that we can fold without consuming the coproduct.
//! assert_eq!(
//!     co1.to_ref().fold(hlist![|&i| format!("i32 {}", i),
//!                              |&b| unreachable!() /* we know this won't happen for co1 */ ]),
//!     "i32 3".to_string());
//! assert_eq!(
//!     co2.to_ref().fold(hlist![|&i| unreachable!() /* we know this won't happen for co2 */,
//!                              |&b| String::from(if b { "t" } else { "f" })]),
//!     "t".to_string());
//!
//! // Here, we use the poly_fn! macro to declare a polymorphic function to avoid caring
//! // about the order in which declare handlers for the types in our coproduct
//! let folded = co1.fold(
//!       poly_fn![
//!         |_b: bool| -> String { unreachable!() }, /* we know this won't happen for co1 */
//!         |i:  i32 | -> String { format!("i32 {}", i) },
//!       ]
//!      );
//! assert_eq!(folded, "i32 3".to_string());
//! # }
//! ```

use hlist::{HCons, HNil};
use indices::{Here, There};
use traits::{Func, Poly, ToMut, ToRef};

/// Enum type representing a Coproduct. Think of this as a Result, but capable
/// of supporting any arbitrary number of types instead of just 2.
///
/// To construct a Coproduct, you would typically declare a type using the `Coprod!` type
/// macro and then use the `inject` method.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate frunk;
/// # fn main() {
/// type I32Bool = Coprod!(i32, bool);
/// let co1 = I32Bool::inject(3);
/// let get_from_1a: Option<&i32> = co1.get();
/// let get_from_1b: Option<&bool> = co1.get();
/// assert_eq!(get_from_1a, Some(&3));
/// assert_eq!(get_from_1b, None);
/// # }
/// ```
#[derive(PartialEq, Debug, Eq, Clone, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Coproduct<H, T> {
    /// Coproduct is either H or T, in this case, it is H
    Inl(H),
    /// Coproduct is either H or T, in this case, it is T
    Inr(T),
}

/// Phantom type for signature purposes only (has no value)
///
/// Used by the macro to terminate the Coproduct type signature
#[derive(PartialEq, Debug, Eq, Clone, Copy, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CNil {}

// Inherent methods
impl<Head, Tail> Coproduct<Head, Tail> {
    /// Instantiate a coproduct from an element.
    ///
    /// This is generally much nicer than nested usage of `Coproduct::{Inl, Inr}`.
    /// The method uses a trick with type inference to automatically build the correct variant
    /// according to the input type.
    ///
    /// In standard usage, the `Index` type parameter can be ignored,
    /// as it will typically be solved for using type inference.
    ///
    /// # Rules
    ///
    /// If the type does not appear in the coproduct, the conversion is forbidden.
    ///
    /// If the type appears multiple times in the coproduct, type inference will fail.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// use frunk::Coproduct;
    ///
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // Constructing coproducts using inject:
    /// let co1_nice: I32F32 = Coproduct::inject(1i32);
    /// let co2_nice: I32F32 = Coproduct::inject(42f32);
    ///
    /// // Compare this to the "hard way":
    /// let co1_ugly: I32F32 = Coproduct::Inl(1i32);
    /// let co2_ugly: I32F32 = Coproduct::Inr(Coproduct::Inl(42f32));
    ///
    /// assert_eq!(co1_nice, co1_ugly);
    /// assert_eq!(co2_nice, co2_ugly);
    ///
    /// // Feel free to use `inject` on a type alias, or even directly on the
    /// // `Coprod!` macro. (the latter requires wrapping the type in `<>`)
    /// let _ = I32F32::inject(42f32);
    /// let _ = <Coprod!(i32, f32)>::inject(42f32);
    ///
    /// // You can also use a turbofish to specify the type of the input when
    /// // it is ambiguous (e.g. an empty `vec![]`).
    /// // The Index parameter should be left as `_`.
    /// type Vi32Vf32 = Coprod!(Vec<i32>, Vec<f32>);
    /// let _: Vi32Vf32 = Coproduct::inject::<Vec<i32>, _>(vec![]);
    /// # }
    /// ```
    #[inline(always)]
    pub fn inject<T, Index>(to_insert: T) -> Self
    where
        Self: CoprodInjector<T, Index>,
    {
        CoprodInjector::inject(to_insert)
    }

    /// Borrow an element from a coproduct by type.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // You can let type inference find the desired type:
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Option<&i32> = co1.get();
    /// let co1_as_f32: Option<&f32> = co1.get();
    /// assert_eq!(co1_as_i32, None);
    /// assert_eq!(co1_as_f32, Some(&42f32));
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.get::<i32, _>(), Some(&1));
    /// assert_eq!(co2.get::<f32, _>(), None);
    /// # }
    /// ```
    #[inline(always)]
    pub fn get<S, Index>(&self) -> Option<&S>
    where
        Self: CoproductSelector<S, Index>,
    {
        CoproductSelector::get(self)
    }

    /// Retrieve an element from a coproduct by type, ignoring all others.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // You can let type inference find the desired type:
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Option<i32> = co1.take();
    /// let co1_as_f32: Option<f32> = co1.take();
    /// assert_eq!(co1_as_i32, None);
    /// assert_eq!(co1_as_f32, Some(42f32));
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.take::<i32, _>(), Some(1));
    /// assert_eq!(co2.take::<f32, _>(), None);
    /// # }
    /// ```
    #[inline(always)]
    pub fn take<T, Index>(self) -> Option<T>
    where
        Self: CoproductTaker<T, Index>,
    {
        CoproductTaker::take(self)
    }

    /// Attempt to extract a value from a coproduct (or get the remaining possibilities).
    ///
    /// By chaining calls to this, one can exhaustively match all variants of a coproduct.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    /// type I32 = Coprod!(i32); // remainder after uninjecting f32
    /// type F32 = Coprod!(f32); // remainder after uninjecting i32
    ///
    /// let co1 = I32F32::inject(42f32);
    ///
    /// // You can let type inference find the desired type.
    /// let co1 = I32F32::inject(42f32);
    /// let co1_as_i32: Result<i32, F32> = co1.uninject();
    /// let co1_as_f32: Result<f32, I32> = co1.uninject();
    /// assert_eq!(co1_as_i32, Err(F32::inject(42f32)));
    /// assert_eq!(co1_as_f32, Ok(42f32));
    ///
    /// // It is not necessary to annotate the type of the remainder:
    /// let res: Result<i32, _> = co1.uninject();
    /// assert!(res.is_err());
    ///
    /// // You can also use turbofish syntax to specify the type.
    /// // The Index parameter should be left as `_`.
    /// let co2 = I32F32::inject(1i32);
    /// assert_eq!(co2.uninject::<i32, _>(), Ok(1));
    /// assert_eq!(co2.uninject::<f32, _>(), Err(I32::inject(1)));
    /// # }
    /// ```
    ///
    /// Chaining calls for an exhaustive match:
    ///
    /// ```rust
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// // Be aware that this particular example could be
    /// // written far more succinctly using `fold`.
    /// fn handle_i32_f32(co: I32F32) -> &'static str {
    ///     // Remove i32 from the coproduct
    ///     let co = match co.uninject::<i32, _>() {
    ///         Ok(x) => return "integer!",
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Remove f32 from the coproduct
    ///     let co = match co.uninject::<f32, _>() {
    ///         Ok(x) => return "float!",
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is empty
    ///     match co { /* unreachable */ }
    /// }
    ///
    /// assert_eq!(handle_i32_f32(I32F32::inject(3)), "integer!");
    /// assert_eq!(handle_i32_f32(I32F32::inject(3.0)), "float!");
    /// # }
    #[inline(always)]
    pub fn uninject<T, Index>(self) -> Result<T, <Self as CoprodUninjector<T, Index>>::Remainder>
    where
        Self: CoprodUninjector<T, Index>,
    {
        CoprodUninjector::uninject(self)
    }

    /// Extract a subset of the possible types in a coproduct (or get the remaining possibilities)
    ///
    /// This is basically [`uninject`] on steroids.  It lets you remove a number
    /// of types from a coproduct at once, leaving behind the remainder in an `Err`.
    /// For instance, one can extract `Coprod!(C, A)` from `Coprod!(A, B, C, D)`
    /// to produce `Result<Coprod!(C, A), Coprod!(B, D)>`.
    ///
    /// Each type in the extracted subset is required to be part of the input coproduct.
    ///
    /// [`uninject`]: #method.uninject
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// use ::frunk::Coproduct;
    ///
    /// # fn main() {
    /// type I32BoolF32 = Coprod!(i32, bool, f32);
    /// type I32F32 = Coprod!(i32, f32);
    ///
    /// let co1 = I32BoolF32::inject(42_f32);
    /// let co2 = I32BoolF32::inject(true);
    ///
    /// let sub1: Result<Coprod!(i32, f32), _> = co1.subset();
    /// let sub2: Result<Coprod!(i32, f32), _> = co2.subset();
    /// assert!(sub1.is_ok());
    /// assert!(sub2.is_err());
    ///
    /// // Turbofish syntax for specifying the target subset is also supported.
    /// // The Indices parameter should be left to type inference using `_`.
    /// assert!(co1.subset::<Coprod!(i32, f32), _>().is_ok());
    /// assert!(co2.subset::<Coprod!(i32, f32), _>().is_err());
    ///
    /// // Order doesn't matter.
    /// assert!(co1.subset::<Coprod!(f32, i32), _>().is_ok());
    /// # }
    /// ```
    ///
    /// Like `uninject`, `subset` can be used for exhaustive matching,
    /// with the advantage that it can remove more than one type at a time:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// use frunk::Coproduct;
    ///
    /// # fn main() {
    /// fn handle_stringly_things(co: Coprod!(&'static str, String)) -> String {
    ///     co.fold(hlist![
    ///         |s| format!("&str {}", s),
    ///         |s| format!("String {}", s),
    ///     ])
    /// }
    ///
    /// fn handle_countly_things(co: Coprod!(u32)) -> String {
    ///     co.fold(hlist![
    ///         |n| vec!["."; n as usize].concat(),
    ///     ])
    /// }
    ///
    /// fn handle_all(co: Coprod!(String, u32, &'static str)) -> String {
    ///     // co is currently Coprod!(String, u32, &'static str)
    ///     let co = match co.subset().map(handle_stringly_things) {
    ///         Ok(s) => return s,
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is Coprod!(u32).
    ///     let co = match co.subset().map(handle_countly_things) {
    ///         Ok(s) => return s,
    ///         Err(co) => co,
    ///     };
    ///
    ///     // Now co is empty.
    ///     match co { /* unreachable */ }
    /// }
    ///
    /// assert_eq!(handle_all(Coproduct::inject("hello")), "&str hello");
    /// assert_eq!(handle_all(Coproduct::inject(String::from("World!"))), "String World!");
    /// assert_eq!(handle_all(Coproduct::inject(4)), "....");
    /// # }
    /// ```
    #[inline(always)]
    pub fn subset<Targets, Indices>(
        self,
    ) -> Result<Targets, <Self as CoproductSubsetter<Targets, Indices>>::Remainder>
    where
        Self: CoproductSubsetter<Targets, Indices>,
    {
        CoproductSubsetter::subset(self)
    }

    /// Convert a coproduct into another that can hold its variants.
    ///
    /// This converts a coproduct into another one which is capable of holding each
    /// of its types. The most well-supported use-cases (i.e. those where type inference
    /// is capable of solving for the indices) are:
    ///
    /// * Reordering variants: `Coprod!(C, A, B) -> Coprod!(A, B, C)`
    /// * Embedding into a superset: `Coprod!(B, D) -> Coprod!(A, B, C, D, E)`
    /// * Coalescing duplicate inputs: `Coprod!(B, B, B, B) -> Coprod!(A, B, C)`
    ///
    /// and of course any combination thereof.
    ///
    /// # Rules
    ///
    /// If any type in the input does not appear in the output, the conversion is forbidden.
    ///
    /// If any type in the input appears multiple times in the output, type inference will fail.
    ///
    /// All of these rules fall naturally out of its fairly simple definition,
    /// which is equivalent to:
    ///
    /// ```text
    /// coprod.fold(hlist![
    ///     |x| Coproduct::inject(x),
    ///     |x| Coproduct::inject(x),
    ///             ...
    ///     |x| Coproduct::inject(x),
    /// ])
    /// ```
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32BoolF32 = Coprod!(i32, bool, f32);
    /// type BoolI32 = Coprod!(bool, i32);
    ///
    /// let co = BoolI32::inject(true);
    /// let embedded: I32BoolF32 = co.embed();
    /// assert_eq!(embedded, I32BoolF32::inject(true));
    ///
    /// // Turbofish syntax for specifying the output type is also supported.
    /// // The Indices parameter should be left to type inference using `_`.
    /// let embedded = co.embed::<I32BoolF32, _>();
    /// assert_eq!(embedded, I32BoolF32::inject(true));
    /// # }
    /// ```
    #[inline(always)]
    pub fn embed<Targets, Indices>(self) -> Targets
    where
        Self: CoproductEmbedder<Targets, Indices>,
    {
        CoproductEmbedder::embed(self)
    }

    /// Borrow each variant of the Coproduct.
    ///
    /// # Example
    ///
    /// Composing with `subset` to match a subset of variants without
    /// consuming the coproduct:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk; fn main() {
    /// use frunk::Coproduct;
    ///
    /// let co: Coprod!(i32, bool, String) = Coproduct::inject(true);
    ///
    /// assert!(co.to_ref().subset::<Coprod!(&bool, &String), _>().is_ok());
    /// # }
    /// ```
    #[inline(always)]
    pub fn to_ref<'a>(&'a self) -> <Self as ToRef<'a>>::Output
    where
        Self: ToRef<'a>,
    {
        ToRef::to_ref(self)
    }

    /// Borrow each variant of the `Coproduct` mutably.
    ///
    /// # Example
    ///
    /// Composing with `subset` to match a subset of variants without
    /// consuming the coproduct:
    ///
    /// ```
    /// # #[macro_use] extern crate frunk; fn main() {
    /// use frunk::Coproduct;
    ///
    /// let mut co: Coprod!(i32, bool, String) = Coproduct::inject(true);
    ///
    /// assert!(co.to_mut().subset::<Coprod!(&mut bool, &mut String), _>().is_ok());
    /// # }
    /// ```
    #[inline(always)]
    pub fn to_mut<'a>(&'a mut self) -> <Self as ToMut<'a>>::Output
    where
        Self: ToMut<'a>,
    {
        ToMut::to_mut(self)
    }

    /// Use functions to transform a Coproduct into a single value.
    ///
    /// A variety of types are supported for the `Folder` argument:
    ///
    /// * An `hlist![]` of closures (one for each type, in order).
    /// * A single closure (for a Coproduct that is homogenous).
    /// * A single [`Poly`].
    ///
    /// [`Poly`]: ../traits/struct.Poly.html
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// type I32F32StrBool = Coprod!(i32, f32, bool);
    ///
    /// let co1 = I32F32StrBool::inject(3);
    /// let co2 = I32F32StrBool::inject(true);
    /// let co3 = I32F32StrBool::inject(42f32);
    ///
    /// let folder = hlist![|&i| format!("int {}", i),
    ///                     |&f| format!("float {}", f),
    ///                     |&b| (if b { "t" } else { "f" }).to_string()];
    ///
    /// assert_eq!(co1.to_ref().fold(folder), "int 3".to_string());
    /// # }
    /// ```
    ///
    /// Using a polymorphic function type has the advantage of not
    /// forcing you to care about the order in which you declare
    /// handlers for the types in your Coproduct.
    ///
    /// ```
    /// # #[macro_use] extern crate frunk;
    /// # fn main() {
    /// use frunk::{Poly, Func};
    ///
    /// type I32F32StrBool = Coprod!(i32, f32, bool);
    ///
    /// impl Func<i32> for P {
    ///     type Output = bool;
    ///     fn call(args: i32) -> Self::Output {
    ///         args > 100
    ///     }
    /// }
    /// impl Func<bool> for P {
    ///     type Output = bool;
    ///     fn call(args: bool) -> Self::Output {
    ///         args
    ///     }
    /// }
    /// impl Func<f32> for P {
    ///     type Output = bool;
    ///     fn call(args: f32) -> Self::Output {
    ///         args > 9000f32
    ///     }
    /// }
    /// struct P;
    ///
    /// let co1 = I32F32StrBool::inject(3);
    /// let folded = co1.fold(Poly(P));
    /// # }
    /// ```
    #[inline(always)]
    pub fn fold<Output, Folder>(self, folder: Folder) -> Output
    where
        Self: CoproductFoldable<Folder, Output>,
    {
        CoproductFoldable::fold(self, folder)
    }
}

/// Trait for instantiating a coproduct from an element
///
/// This trait is part of the implementation of the inherent static method
/// [`Coproduct::inject`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. In most code, `Coproduct::inject` will
/// "just work," with or without this trait.
///
/// [`Coproduct::inject`]: enum.Coproduct.html#method.inject
pub trait CoprodInjector<InjectType, Index> {
    /// Instantiate a coproduct from an element.
    ///
    /// Please see the [inherent static method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent static method]: enum.Coproduct.html#method.inject
    fn inject(to_insert: InjectType) -> Self;
}

impl<I, Tail> CoprodInjector<I, Here> for Coproduct<I, Tail> {
    fn inject(to_insert: I) -> Self {
        Coproduct::Inl(to_insert)
    }
}

impl<Head, I, Tail, TailIndex> CoprodInjector<I, There<TailIndex>> for Coproduct<Head, Tail>
where
    Tail: CoprodInjector<I, TailIndex>,
{
    fn inject(to_insert: I) -> Self {
        let tail_inserted = <Tail as CoprodInjector<I, TailIndex>>::inject(to_insert);
        Coproduct::Inr(tail_inserted)
    }
}

// For turning something into a Coproduct -->

/// Trait for borrowing a coproduct element by type
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::get`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.get()` should "just work" even without the trait.
///
/// [`Coproduct::get`]: enum.Coproduct.html#method.get
pub trait CoproductSelector<S, I> {
    /// Borrow an element from a coproduct by type.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.get
    fn get(&self) -> Option<&S>;
}

impl<Head, Tail> CoproductSelector<Head, Here> for Coproduct<Head, Tail> {
    fn get(&self) -> Option<&Head> {
        use self::Coproduct::*;
        match *self {
            Inl(ref thing) => Some(thing),
            _ => None, // Impossible
        }
    }
}

impl<Head, FromTail, Tail, TailIndex> CoproductSelector<FromTail, There<TailIndex>>
    for Coproduct<Head, Tail>
where
    Tail: CoproductSelector<FromTail, TailIndex>,
{
    fn get(&self) -> Option<&FromTail> {
        use self::Coproduct::*;
        match *self {
            Inr(ref rest) => rest.get(),
            _ => None, // Impossible
        }
    }
}

/// Trait for retrieving a coproduct element by type
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::take`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.take()` should "just work" even without the trait.
///
/// [`Coproduct::take`]: enum.Coproduct.html#method.take
pub trait CoproductTaker<S, I> {
    /// Retrieve an element from a coproduct by type, ignoring all others.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.take
    fn take(self) -> Option<S>;
}

impl<Head, Tail> CoproductTaker<Head, Here> for Coproduct<Head, Tail> {
    fn take(self) -> Option<Head> {
        use self::Coproduct::*;
        match self {
            Inl(thing) => Some(thing),
            _ => None, // Impossible
        }
    }
}

impl<Head, FromTail, Tail, TailIndex> CoproductTaker<FromTail, There<TailIndex>>
    for Coproduct<Head, Tail>
where
    Tail: CoproductTaker<FromTail, TailIndex>,
{
    fn take(self) -> Option<FromTail> {
        use self::Coproduct::*;
        match self {
            Inr(rest) => rest.take(),
            _ => None, // Impossible
        }
    }
}

/// Trait for folding a coproduct into a single value.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::fold`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts or Folders of unknown type. If the type of everything is known,
/// then `co.fold(folder)` should "just work" even without the trait.
///
/// [`Coproduct::fold`]: enum.Coproduct.html#method.fold
pub trait CoproductFoldable<Folder, Output> {
    /// Use functions to fold a coproduct into a single value.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.fold
    fn fold(self, f: Folder) -> Output;
}

impl<P, R, CH, CTail> CoproductFoldable<Poly<P>, R> for Coproduct<CH, CTail>
where
    P: Func<CH, Output = R>,
    CTail: CoproductFoldable<Poly<P>, R>,
{
    fn fold(self, f: Poly<P>) -> R {
        use self::Coproduct::*;
        match self {
            Inl(r) => P::call(r),
            Inr(rest) => rest.fold(f),
        }
    }
}

impl<F, R, FTail, CH, CTail> CoproductFoldable<HCons<F, FTail>, R> for Coproduct<CH, CTail>
where
    F: FnOnce(CH) -> R,
    CTail: CoproductFoldable<FTail, R>,
{
    fn fold(self, f: HCons<F, FTail>) -> R {
        use self::Coproduct::*;
        let f_head = f.head;
        let f_tail = f.tail;
        match self {
            Inl(r) => (f_head)(r),
            Inr(rest) => rest.fold(f_tail),
        }
    }
}

/// This is literally impossible; CNil is not instantiable
impl<F, R> CoproductFoldable<F, R> for CNil {
    fn fold(self, _: F) -> R {
        unreachable!()
    }
}

impl<'a, CH: 'a, CTail> ToRef<'a> for Coproduct<CH, CTail>
where
    CTail: ToRef<'a>,
{
    type Output = Coproduct<&'a CH, <CTail as ToRef<'a>>::Output>;

    #[inline(always)]
    fn to_ref(&'a self) -> Self::Output {
        match *self {
            Coproduct::Inl(ref r) => Coproduct::Inl(r),
            Coproduct::Inr(ref rest) => Coproduct::Inr(rest.to_ref()),
        }
    }
}

impl<'a> ToRef<'a> for CNil {
    type Output = CNil;

    fn to_ref(&'a self) -> CNil {
        match *self {}
    }
}

impl<'a, CH: 'a, CTail> ToMut<'a> for Coproduct<CH, CTail>
where
    CTail: ToMut<'a>,
{
    type Output = Coproduct<&'a mut CH, <CTail as ToMut<'a>>::Output>;

    #[inline(always)]
    fn to_mut(&'a mut self) -> Self::Output {
        match *self {
            Coproduct::Inl(ref mut r) => Coproduct::Inl(r),
            Coproduct::Inr(ref mut rest) => Coproduct::Inr(rest.to_mut()),
        }
    }
}

impl<'a> ToMut<'a> for CNil {
    type Output = CNil;

    fn to_mut(&'a mut self) -> CNil {
        match *self {}
    }
}

/// Trait for extracting a value from a coproduct in an exhaustive way.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::uninject`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.uninject()` should "just work" even without the trait.
///
/// [`Coproduct::uninject`]: enum.Coproduct.html#method.uninject
pub trait CoprodUninjector<T, Idx>: CoprodInjector<T, Idx> {
    type Remainder;

    /// Attempt to extract a value from a coproduct (or get the remaining possibilities).
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.uninject
    fn uninject(self) -> Result<T, Self::Remainder>;
}

impl<Hd, Tl> CoprodUninjector<Hd, Here> for Coproduct<Hd, Tl> {
    type Remainder = Tl;

    fn uninject(self) -> Result<Hd, Tl> {
        match self {
            Coproduct::Inl(h) => Ok(h),
            Coproduct::Inr(t) => Err(t),
        }
    }
}

impl<Hd, Tl, T, N> CoprodUninjector<T, There<N>> for Coproduct<Hd, Tl>
where
    Tl: CoprodUninjector<T, N>,
{
    type Remainder = Coproduct<Hd, Tl::Remainder>;

    fn uninject(self) -> Result<T, Self::Remainder> {
        match self {
            Coproduct::Inl(h) => Err(Coproduct::Inl(h)),
            Coproduct::Inr(t) => t.uninject().map_err(Coproduct::Inr),
        }
    }
}

/// Trait for extracting a subset of the possible types in a coproduct.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::subset`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.subset()` should "just work" even without the trait.
///
/// [`Coproduct::subset`]: enum.Coproduct.html#method.subset
pub trait CoproductSubsetter<Targets, Indices>: Sized {
    type Remainder;

    /// Extract a subset of the possible types in a coproduct (or get the remaining possibilities)
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.subset
    fn subset(self) -> Result<Targets, Self::Remainder>;
}

impl<Choices, THead, TTail, NHead, NTail, Rem>
    CoproductSubsetter<Coproduct<THead, TTail>, HCons<NHead, NTail>> for Choices
where
    Self: CoprodUninjector<THead, NHead, Remainder = Rem>,
    Rem: CoproductSubsetter<TTail, NTail>,
{
    type Remainder = <Rem as CoproductSubsetter<TTail, NTail>>::Remainder;

    /// Attempt to extract a value from a subset of the types.
    fn subset(self) -> Result<Coproduct<THead, TTail>, Self::Remainder> {
        match self.uninject() {
            Ok(good) => Ok(Coproduct::Inl(good)),
            Err(bads) => match bads.subset() {
                Ok(goods) => Ok(Coproduct::Inr(goods)),
                Err(bads) => Err(bads),
            },
        }
    }
}

impl<Choices> CoproductSubsetter<CNil, HNil> for Choices {
    type Remainder = Self;

    #[inline(always)]
    fn subset(self) -> Result<CNil, Self::Remainder> {
        Err(self)
    }
}

/// Trait for converting a coproduct into another that can hold its variants.
///
/// This trait is part of the implementation of the inherent method
/// [`Coproduct::embed`]. Please see that method for more information.
///
/// You only need to import this trait when working with generic
/// Coproducts of unknown type. If you have a Coproduct of known type,
/// then `co.embed()` should "just work" even without the trait.
///
/// [`Coproduct::embed`]: enum.Coproduct.html#method.embed
pub trait CoproductEmbedder<Out, Indices> {
    /// Convert a coproduct into another that can hold its variants.
    ///
    /// Please see the [inherent method] for more information.
    ///
    /// The only difference between that inherent method and this
    /// trait method is the location of the type parameters.
    /// (here, they are on the trait rather than the method)
    ///
    /// [inherent method]: enum.Coproduct.html#method.embed
    fn embed(self) -> Out;
}

impl CoproductEmbedder<CNil, HNil> for CNil {
    fn embed(self) -> CNil {
        match self {
        // impossible!
    }
    }
}

impl<Head, Tail> CoproductEmbedder<Coproduct<Head, Tail>, HNil> for CNil
where
    CNil: CoproductEmbedder<Tail, HNil>,
{
    fn embed(self) -> Coproduct<Head, Tail> {
        match self {
        // impossible!
    }
    }
}

impl<Head, Tail, Out, NHead, NTail> CoproductEmbedder<Out, HCons<NHead, NTail>>
    for Coproduct<Head, Tail>
where
    Out: CoprodInjector<Head, NHead>,
    Tail: CoproductEmbedder<Out, NTail>,
{
    fn embed(self) -> Out {
        match self {
            Coproduct::Inl(this) => Out::inject(this),
            Coproduct::Inr(those) => those.embed(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Coproduct::*;
    use super::*;

    #[test]
    fn test_coproduct_inject() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        let co1 = I32StrBool::inject(3);
        assert_eq!(co1, Inl(3));
        let get_from_1a: Option<&i32> = co1.get();
        let get_from_1b: Option<&bool> = co1.get();
        assert_eq!(get_from_1a, Some(&3));
        assert_eq!(get_from_1b, None);

        let co2 = I32StrBool::inject(false);
        assert_eq!(co2, Inr(Inr(Inl(false))));
        let get_from_2a: Option<&i32> = co2.get();
        let get_from_2b: Option<&bool> = co2.get();
        assert_eq!(get_from_2a, None);
        assert_eq!(get_from_2b, Some(&false));
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_coproduct_fold_consuming() {
        type I32F32StrBool = Coprod!(i32, f32, bool);

        let co1 = I32F32StrBool::inject(3);
        let folded = co1.fold(hlist![
            |i| format!("int {}", i),
            |f| format!("float {}", f),
            |b| (if b { "t" } else { "f" }).to_string(),
        ]);

        assert_eq!(folded, "int 3".to_string());
    }

    #[test]
    fn test_coproduct_poly_fold_consuming() {
        type I32F32StrBool = Coprod!(i32, f32, bool);

        impl Func<i32> for P {
            type Output = bool;
            fn call(args: i32) -> Self::Output {
                args > 100
            }
        }
        impl Func<bool> for P {
            type Output = bool;
            fn call(args: bool) -> Self::Output {
                args
            }
        }
        impl Func<f32> for P {
            type Output = bool;
            fn call(args: f32) -> Self::Output {
                args > 9000f32
            }
        }
        struct P;

        let co1 = I32F32StrBool::inject(3);
        let folded = co1.fold(Poly(P));

        assert_eq!(folded, false);
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_coproduct_fold_non_consuming() {
        type I32F32Bool = Coprod!(i32, f32, bool);

        let co1 = I32F32Bool::inject(3);
        let co2 = I32F32Bool::inject(true);
        let co3 = I32F32Bool::inject(42f32);

        assert_eq!(
            co1.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "int 3".to_string()
        );
        assert_eq!(
            co2.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "t".to_string()
        );
        assert_eq!(
            co3.to_ref().fold(hlist![
                |&i| format!("int {}", i),
                |&f| format!("float {}", f),
                |&b| (if b { "t" } else { "f" }).to_string(),
            ]),
            "float 42".to_string()
        );
    }

    #[test]
    fn test_coproduct_uninject() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        let co1 = I32StrBool::inject(3);
        let co2 = I32StrBool::inject("hello");
        let co3 = I32StrBool::inject(false);

        let uninject_i32_co1: Result<i32, _> = co1.uninject();
        let uninject_str_co1: Result<&'static str, _> = co1.uninject();
        let uninject_bool_co1: Result<bool, _> = co1.uninject();
        assert_eq!(uninject_i32_co1, Ok(3));
        assert!(uninject_str_co1.is_err());
        assert!(uninject_bool_co1.is_err());

        let uninject_i32_co2: Result<i32, _> = co2.uninject();
        let uninject_str_co2: Result<&'static str, _> = co2.uninject();
        let uninject_bool_co2: Result<bool, _> = co2.uninject();
        assert!(uninject_i32_co2.is_err());
        assert_eq!(uninject_str_co2, Ok("hello"));
        assert!(uninject_bool_co2.is_err());

        let uninject_i32_co3: Result<i32, _> = co3.uninject();
        let uninject_str_co3: Result<&'static str, _> = co3.uninject();
        let uninject_bool_co3: Result<bool, _> = co3.uninject();
        assert!(uninject_i32_co3.is_err());
        assert!(uninject_str_co3.is_err());
        assert_eq!(uninject_bool_co3, Ok(false));
    }

    #[test]
    fn test_coproduct_subset() {
        type I32StrBool = Coprod!(i32, &'static str, bool);

        // CNil can be extracted from anything.
        let res: Result<CNil, _> = I32StrBool::inject(3).subset();
        assert!(res.is_err());

        if false {
            #[allow(unreachable_code)]
            {
                // ...including CNil.
                #[allow(unused)]
                let cnil: CNil = panic!();
                let res: Result<CNil, _> = cnil.subset();
                let _ = res;
            }
        }

        {
            // Order does not matter.
            let co = I32StrBool::inject(3);
            let res: Result<Coprod!(bool, i32), _> = co.subset();
            assert_eq!(res, Ok(Coproduct::Inr(Coproduct::Inl(3))));

            let co = I32StrBool::inject("4");
            let res: Result<Coprod!(bool, i32), _> = co.subset();
            assert_eq!(res, Err(Coproduct::Inl("4")));
        }
    }

    #[test]
    fn test_coproduct_embed() {
        // CNil can be embedded into any coproduct.
        if false {
            #[allow(unreachable_code)]
            {
                #[allow(unused)]
                let cnil: CNil = panic!();
                let _: CNil = cnil.embed();

                #[allow(unused)]
                let cnil: CNil = panic!();
                let _: Coprod!(i32, bool) = cnil.embed();
            }
        }

        #[derive(Debug, PartialEq)]
        struct A;
        #[derive(Debug, PartialEq)]
        struct B;
        #[derive(Debug, PartialEq)]
        struct C;

        {
            // Order does not matter.
            let co_a = <Coprod!(C, A, B)>::inject(A);
            let co_b = <Coprod!(C, A, B)>::inject(B);
            let co_c = <Coprod!(C, A, B)>::inject(C);
            let out_a: Coprod!(A, B, C) = co_a.embed();
            let out_b: Coprod!(A, B, C) = co_b.embed();
            let out_c: Coprod!(A, B, C) = co_c.embed();
            assert_eq!(out_a, Coproduct::Inl(A));
            assert_eq!(out_b, Coproduct::Inr(Coproduct::Inl(B)));
            assert_eq!(out_c, Coproduct::Inr(Coproduct::Inr(Coproduct::Inl(C))));
        }

        {
            // Multiple variants can resolve to the same output w/o type annotations
            type ABC = Coprod!(A, B, C);
            type BBB = Coprod!(B, B, B);

            let b1 = BBB::inject::<_, Here>(B);
            let b2 = BBB::inject::<_, There<Here>>(B);
            let out1: ABC = b1.embed();
            let out2: ABC = b2.embed();
            assert_eq!(out1, Coproduct::Inr(Coproduct::Inl(B)));
            assert_eq!(out2, Coproduct::Inr(Coproduct::Inl(B)));
        }
    }
}