1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! Implementation using ordered keys and exponential search.

use std::ops::Deref;

use ::difference::Semigroup;
use trace::implementations::BatchContainer;

use super::{Trie, Cursor, Builder, MergeBuilder, TupleBuilder};


/// A layer of unordered values.
#[derive(Debug, Eq, PartialEq, Clone, Abomonation)]
pub struct OrderedLeaf<K, R, C=Vec<(K,R)>>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    /// Unordered values.
    pub vals: C,
}

impl<K: Ord+Clone, R: Semigroup+Clone, C> Trie for OrderedLeaf<K, R, C>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    type Item = (K, R);
    type Cursor = OrderedLeafCursor;
    type MergeBuilder = OrderedLeafBuilder<K, R, C>;
    type TupleBuilder = OrderedLeafBuilder<K, R, C>;
    fn keys(&self) -> usize { self.vals.len() }
    fn tuples(&self) -> usize { <OrderedLeaf<K, R, C> as Trie>::keys(&self) }
    fn cursor_from(&self, lower: usize, upper: usize) -> Self::Cursor {
        OrderedLeafCursor {
            bounds: (lower, upper),
            pos: lower,
        }
    }
}

/// A builder for unordered values.
pub struct OrderedLeafBuilder<K, R, C=Vec<(K,R)>>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    /// Unordered values.
    pub vals: C,
}

impl<K: Ord+Clone, R: Semigroup+Clone, C> Builder for OrderedLeafBuilder<K, R, C>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    type Trie = OrderedLeaf<K, R, C>;
    fn boundary(&mut self) -> usize { self.vals.len() }
    fn done(self) -> Self::Trie { OrderedLeaf { vals: self.vals } }
}

impl<K: Ord+Clone, R: Semigroup+Clone, C> MergeBuilder for OrderedLeafBuilder<K, R, C>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    fn with_capacity(other1: &Self::Trie, other2: &Self::Trie) -> Self {
        OrderedLeafBuilder {
            vals: C::merge_capacity(&other1.vals, &other2.vals),
        }
    }
    #[inline]
    fn copy_range(&mut self, other: &Self::Trie, lower: usize, upper: usize) {
        self.vals.copy_range(&other.vals, lower, upper);
    }
    fn push_merge(&mut self, other1: (&Self::Trie, usize, usize), other2: (&Self::Trie, usize, usize)) -> usize {

        let (trie1, mut lower1, upper1) = other1;
        let (trie2, mut lower2, upper2) = other2;

        self.vals.reserve((upper1 - lower1) + (upper2 - lower2));

        // while both mergees are still active
        while lower1 < upper1 && lower2 < upper2 {

            match trie1.vals[lower1].0.cmp(&trie2.vals[lower2].0) {
                ::std::cmp::Ordering::Less => {
                    // determine how far we can advance lower1 until we reach/pass lower2
                    let step = 1 + trie1.vals.advance(1+lower1, upper1, |x| x.0 < trie2.vals[lower2].0);
                    let step = std::cmp::min(step, 1000);
                    <OrderedLeafBuilder<K, R, C> as MergeBuilder>::copy_range(self, trie1, lower1, lower1 + step);
                    lower1 += step;
                }
                ::std::cmp::Ordering::Equal => {

                    let mut sum = trie1.vals[lower1].1.clone();
                    sum.plus_equals(&trie2.vals[lower2].1);
                    if !sum.is_zero() {
                        self.vals.push((trie1.vals[lower1].0.clone(), sum));
                    }

                    lower1 += 1;
                    lower2 += 1;
                }
                ::std::cmp::Ordering::Greater => {
                    // determine how far we can advance lower2 until we reach/pass lower1
                    let step = 1 + trie2.vals.advance(1+lower2, upper2, |x| x.0 < trie1.vals[lower1].0);
                    let step = std::cmp::min(step, 1000);
                    <OrderedLeafBuilder<K, R, C> as MergeBuilder>::copy_range(self, trie2, lower2, lower2 + step);
                    lower2 += step;
                }
            }
        }

        if lower1 < upper1 { <OrderedLeafBuilder<K, R, C> as MergeBuilder>::copy_range(self, trie1, lower1, upper1); }
        if lower2 < upper2 { <OrderedLeafBuilder<K, R, C> as MergeBuilder>::copy_range(self, trie2, lower2, upper2); }

        self.vals.len()
    }
}

impl<K: Ord+Clone, R: Semigroup+Clone, C> TupleBuilder for OrderedLeafBuilder<K, R, C>
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    type Item = (K, R);
    fn new() -> Self { OrderedLeafBuilder { vals: C::default() } }
    fn with_capacity(cap: usize) -> Self { OrderedLeafBuilder { vals: C::with_capacity(cap) } }
    #[inline] fn push_tuple(&mut self, tuple: (K, R)) { self.vals.push(tuple) }
}

/// A cursor for walking through an unordered sequence of values.
///
/// This cursor does not support `seek`, though I'm not certain how to expose this.
#[derive(Debug)]
pub struct OrderedLeafCursor {
    pos: usize,
    bounds: (usize, usize),
}

impl<K: Clone, R: Clone, C> Cursor<OrderedLeaf<K, R, C>> for OrderedLeafCursor
where
    C: BatchContainer<Item=(K, R)>+Deref<Target=[(K, R)]>,
{
    type Key = (K, R);
    fn key<'a>(&self, storage: &'a OrderedLeaf<K, R, C>) -> &'a Self::Key { &storage.vals[self.pos] }
    fn step(&mut self, storage: &OrderedLeaf<K, R, C>) {
        self.pos += 1;
        if !self.valid(storage) {
            self.pos = self.bounds.1;
        }
    }
    fn seek(&mut self, _storage: &OrderedLeaf<K, R, C>, _key: &Self::Key) {
        panic!("seeking in an OrderedLeafCursor; should be fine, panic is wrong.");
    }
    fn valid(&self, _storage: &OrderedLeaf<K, R, C>) -> bool { self.pos < self.bounds.1 }
    fn rewind(&mut self, _storage: &OrderedLeaf<K, R, C>) {
        self.pos = self.bounds.0;
    }
    fn reposition(&mut self, _storage: &OrderedLeaf<K, R, C>, lower: usize, upper: usize) {
        self.pos = lower;
        self.bounds = (lower, upper);
    }
}