1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
//! APIs to write to Parquet format.
//!
//! # Arrow/Parquet Interoperability
//! As of [parquet-format v2.9](https://github.com/apache/parquet-format/blob/master/LogicalTypes.md)
//! there are Arrow [DataTypes](crate::datatypes::DataType) which do not have a parquet
//! representation. These include but are not limited to:
//! * `DataType::Timestamp(TimeUnit::Second, _)`
//! * `DataType::Int64`
//! * `DataType::Duration`
//! * `DataType::Date64`
//! * `DataType::Time32(TimeUnit::Second)`
//!
//! The use of these arrow types will result in no logical type being stored within a parquet file.

mod binary;
mod boolean;
mod dictionary;
mod file;
mod fixed_len_bytes;
mod nested;
mod pages;
mod primitive;
mod row_group;
mod schema;
mod sink;
mod utf8;
mod utils;

use crate::array::*;
use crate::datatypes::*;
use crate::error::{Error, Result};
use crate::types::days_ms;
use crate::types::NativeType;

pub use nested::write_rep_and_def;
pub use pages::{to_leaves, to_nested, to_parquet_leaves};
use parquet2::schema::types::PrimitiveType as ParquetPrimitiveType;
pub use parquet2::{
    compression::{BrotliLevel, CompressionOptions, GzipLevel, ZstdLevel},
    encoding::Encoding,
    fallible_streaming_iterator,
    metadata::{Descriptor, FileMetaData, KeyValue, SchemaDescriptor, ThriftFileMetaData},
    page::{CompressedDataPage, CompressedPage, Page},
    schema::types::{FieldInfo, ParquetType, PhysicalType as ParquetPhysicalType},
    write::{
        compress, write_metadata_sidecar, Compressor, DynIter, DynStreamingIterator, RowGroupIter,
        Version,
    },
    FallibleStreamingIterator,
};
pub use utils::write_def_levels;

/// Currently supported options to write to parquet
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct WriteOptions {
    /// Whether to write statistics
    pub write_statistics: bool,
    /// The page and file version to use
    pub version: Version,
    /// The compression to apply to every page
    pub compression: CompressionOptions,
    /// The size to flush a page, defaults to 1024 * 1024 if None
    pub data_pagesize_limit: Option<usize>,
}

use crate::compute::aggregate::estimated_bytes_size;
pub use file::FileWriter;
pub use row_group::{row_group_iter, RowGroupIterator};
pub use schema::to_parquet_type;
pub use sink::FileSink;

pub use pages::array_to_columns;
pub use pages::Nested;

/// returns offset and length to slice the leaf values
pub fn slice_nested_leaf(nested: &[Nested]) -> (usize, usize) {
    // find the deepest recursive dremel structure as that one determines how many values we must
    // take
    let mut out = (0, 0);
    for nested in nested.iter().rev() {
        match nested {
            Nested::LargeList(l_nested) => {
                let start = *l_nested.offsets.first().unwrap();
                let end = *l_nested.offsets.last().unwrap();
                return (start as usize, (end - start) as usize);
            }
            Nested::List(l_nested) => {
                let start = *l_nested.offsets.first().unwrap();
                let end = *l_nested.offsets.last().unwrap();
                return (start as usize, (end - start) as usize);
            }
            Nested::Primitive(_, _, len) => out = (0, *len),
            _ => {}
        }
    }
    out
}

pub(self) fn decimal_length_from_precision(precision: usize) -> usize {
    // digits = floor(log_10(2^(8*n - 1) - 1))
    // ceil(digits) = log10(2^(8*n - 1) - 1)
    // 10^ceil(digits) = 2^(8*n - 1) - 1
    // 10^ceil(digits) + 1 = 2^(8*n - 1)
    // log2(10^ceil(digits) + 1) = (8*n - 1)
    // log2(10^ceil(digits) + 1) + 1 = 8*n
    // (log2(10^ceil(a) + 1) + 1) / 8 = n
    (((10.0_f64.powi(precision as i32) + 1.0).log2() + 1.0) / 8.0).ceil() as usize
}

/// Creates a parquet [`SchemaDescriptor`] from a [`Schema`].
pub fn to_parquet_schema(schema: &Schema) -> Result<SchemaDescriptor> {
    let parquet_types = schema
        .fields
        .iter()
        .map(to_parquet_type)
        .collect::<Result<Vec<_>>>()?;
    Ok(SchemaDescriptor::new("root".to_string(), parquet_types))
}

/// Checks whether the `data_type` can be encoded as `encoding`.
/// Note that this is whether this implementation supports it, which is a subset of
/// what the parquet spec allows.
pub fn can_encode(data_type: &DataType, encoding: Encoding) -> bool {
    if let (Encoding::DeltaBinaryPacked, DataType::Decimal(p, _)) =
        (encoding, data_type.to_logical_type())
    {
        return *p <= 18;
    };

    matches!(
        (encoding, data_type.to_logical_type()),
        (Encoding::Plain, _)
            | (
                Encoding::DeltaLengthByteArray,
                DataType::Binary | DataType::LargeBinary | DataType::Utf8 | DataType::LargeUtf8,
            )
            | (Encoding::RleDictionary, DataType::Dictionary(_, _, _))
            | (Encoding::PlainDictionary, DataType::Dictionary(_, _, _))
            | (
                Encoding::DeltaBinaryPacked,
                DataType::Null
                    | DataType::UInt8
                    | DataType::UInt16
                    | DataType::UInt32
                    | DataType::UInt64
                    | DataType::Int8
                    | DataType::Int16
                    | DataType::Int32
                    | DataType::Date32
                    | DataType::Time32(_)
                    | DataType::Int64
                    | DataType::Date64
                    | DataType::Time64(_)
                    | DataType::Timestamp(_, _)
                    | DataType::Duration(_)
            )
    )
}

/// Slices the [`Array`] to `Box<dyn Array>` and `Vec<Nested>`.
pub fn slice_parquet_array<'a>(
    array: &'a dyn Array,
    nested: &'a [Nested<'a>],
    offset: usize,
    length: usize,
) -> (Box<dyn Array>, Vec<Nested<'a>>) {
    let mut nested = nested.to_vec();

    let mut is_nested = false;
    for nested in nested.iter_mut() {
        match nested {
            Nested::LargeList(l_nested) => {
                is_nested = true;
                // the slice is a bit awkward because we always want the latest value to compute the next length;
                l_nested.offsets = &l_nested.offsets
                    [offset..offset + std::cmp::min(length + 1, l_nested.offsets.len())];
            }
            Nested::List(l_nested) => {
                is_nested = true;
                l_nested.offsets = &l_nested.offsets
                    [offset..offset + std::cmp::min(length + 1, l_nested.offsets.len())];
            }
            _ => {}
        }
    }
    if is_nested {
        (array.to_boxed(), nested)
    } else {
        (array.slice(offset, length), nested)
    }
}

/// Get the length of [`Array`] that should be sliced.
pub fn get_max_length(array: &dyn Array, nested: &[Nested]) -> usize {
    // the inner nested structure that
    // dictates how often the primitive should be repeated
    for nested in nested.iter().rev() {
        match nested {
            Nested::LargeList(l_nested) => return l_nested.offsets.len() - 1,
            Nested::List(l_nested) => return l_nested.offsets.len() - 1,
            _ => {}
        }
    }
    array.len()
}

/// Returns an iterator of [`Page`].
#[allow(clippy::needless_collect)]
pub fn array_to_pages(
    array: &dyn Array,
    type_: ParquetPrimitiveType,
    nested: &[Nested],
    options: WriteOptions,
    encoding: Encoding,
) -> Result<DynIter<'static, Result<Page>>> {
    // maximum page size is 2^31 e.g. i32::MAX
    // we split at 2^31 - 2^25 to err on the safe side
    // we also check for an array.len > 3 to prevent infinite recursion
    // still have to figure out how to deal with values that are i32::MAX size, such as very large
    // strings or a list column with many elements

    let array_byte_size = estimated_bytes_size(array);
    if array_byte_size >= (2u32.pow(31) - 2u32.pow(25)) as usize && array.len() > 3 {
        let length = get_max_length(array, nested);
        let split_at = length / 2;
        let (sub_array_left, subnested_left) = slice_parquet_array(array, nested, 0, split_at);
        let (sub_array_right, subnested_right) =
            slice_parquet_array(array, nested, split_at, length - split_at);

        Ok(DynIter::new(
            array_to_pages(
                sub_array_left.as_ref(),
                type_.clone(),
                subnested_left.as_ref(),
                options,
                encoding,
            )?
            .chain(array_to_pages(
                sub_array_right.as_ref(),
                type_,
                subnested_right.as_ref(),
                options,
                encoding,
            )?),
        ))
    } else {
        match array.data_type() {
            DataType::Dictionary(key_type, _, _) => {
                match_integer_type!(key_type, |$T| {
                    dictionary::array_to_pages::<$T>(
                        array.as_any().downcast_ref().unwrap(),
                        type_,
                        nested,
                        options,
                        encoding,
                    )
                })
            }
            _ => {
                const DEFAULT_PAGE_SIZE: usize = 1024 * 1024;
                let page_size = options.data_pagesize_limit.unwrap_or(DEFAULT_PAGE_SIZE);
                let bytes_per_row =
                    ((array_byte_size as f64) / ((array.len() + 1) as f64)) as usize;
                let rows_per_page = (page_size / (bytes_per_row + 1)).max(1);

                let length = get_max_length(array, nested);
                let vs: Vec<Result<Page>> = (0..length)
                    .step_by(rows_per_page)
                    .map(|offset| {
                        let length = if offset + rows_per_page > length {
                            length - offset
                        } else {
                            rows_per_page
                        };

                        let (sub_array, subnested) =
                            slice_parquet_array(array, nested, offset, length);
                        array_to_page(
                            sub_array.as_ref(),
                            type_.clone(),
                            &subnested,
                            options,
                            encoding,
                        )
                    })
                    .collect();

                Ok(DynIter::new(vs.into_iter()))
            }
        }
    }
}

/// Converts an [`Array`] to a [`CompressedPage`] based on options, descriptor and `encoding`.
pub fn array_to_page(
    array: &dyn Array,
    type_: ParquetPrimitiveType,
    nested: &[Nested],
    options: WriteOptions,
    encoding: Encoding,
) -> Result<Page> {
    if nested.len() == 1 {
        // special case where validity == def levels
        return array_to_page_simple(array, type_, options, encoding);
    }
    array_to_page_nested(array, type_, nested, options, encoding)
}

/// Converts an [`Array`] to a [`CompressedPage`] based on options, descriptor and `encoding`.
pub fn array_to_page_simple(
    array: &dyn Array,
    type_: ParquetPrimitiveType,
    options: WriteOptions,
    encoding: Encoding,
) -> Result<Page> {
    let data_type = array.data_type();
    if !can_encode(data_type, encoding) {
        return Err(Error::InvalidArgumentError(format!(
            "The datatype {data_type:?} cannot be encoded by {encoding:?}"
        )));
    }

    match data_type.to_logical_type() {
        DataType::Boolean => {
            boolean::array_to_page(array.as_any().downcast_ref().unwrap(), options, type_)
        }
        // casts below MUST match the casts done at the metadata (field -> parquet type).
        DataType::UInt8 => primitive::array_to_page_integer::<u8, i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::UInt16 => primitive::array_to_page_integer::<u16, i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::UInt32 => primitive::array_to_page_integer::<u32, i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::UInt64 => primitive::array_to_page_integer::<u64, i64>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Int8 => primitive::array_to_page_integer::<i8, i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Int16 => primitive::array_to_page_integer::<i16, i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Int32 | DataType::Date32 | DataType::Time32(_) => {
            primitive::array_to_page_integer::<i32, i32>(
                array.as_any().downcast_ref().unwrap(),
                options,
                type_,
                encoding,
            )
        }
        DataType::Int64
        | DataType::Date64
        | DataType::Time64(_)
        | DataType::Timestamp(_, _)
        | DataType::Duration(_) => primitive::array_to_page_integer::<i64, i64>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Float32 => primitive::array_to_page_plain::<f32, f32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
        ),
        DataType::Float64 => primitive::array_to_page_plain::<f64, f64>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
        ),
        DataType::Utf8 => utf8::array_to_page::<i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::LargeUtf8 => utf8::array_to_page::<i64>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Binary => binary::array_to_page::<i32>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::LargeBinary => binary::array_to_page::<i64>(
            array.as_any().downcast_ref().unwrap(),
            options,
            type_,
            encoding,
        ),
        DataType::Null => {
            let array = Int32Array::new_null(DataType::Int32, array.len());
            primitive::array_to_page_plain::<i32, i32>(&array, options, type_)
        }
        DataType::Interval(IntervalUnit::YearMonth) => {
            let type_ = type_;
            let array = array
                .as_any()
                .downcast_ref::<PrimitiveArray<i32>>()
                .unwrap();
            let mut values = Vec::<u8>::with_capacity(12 * array.len());
            array.values().iter().for_each(|x| {
                let bytes = &x.to_le_bytes();
                values.extend_from_slice(bytes);
                values.extend_from_slice(&[0; 8]);
            });
            let array = FixedSizeBinaryArray::new(
                DataType::FixedSizeBinary(12),
                values.into(),
                array.validity().cloned(),
            );
            let statistics = if options.write_statistics {
                Some(fixed_len_bytes::build_statistics(&array, type_.clone()))
            } else {
                None
            };
            fixed_len_bytes::array_to_page(&array, options, type_, statistics)
        }
        DataType::Interval(IntervalUnit::DayTime) => {
            let type_ = type_;
            let array = array
                .as_any()
                .downcast_ref::<PrimitiveArray<days_ms>>()
                .unwrap();
            let mut values = Vec::<u8>::with_capacity(12 * array.len());
            array.values().iter().for_each(|x| {
                let bytes = &x.to_le_bytes();
                values.extend_from_slice(&[0; 4]); // months
                values.extend_from_slice(bytes); // days and seconds
            });
            let array = FixedSizeBinaryArray::new(
                DataType::FixedSizeBinary(12),
                values.into(),
                array.validity().cloned(),
            );
            let statistics = if options.write_statistics {
                Some(fixed_len_bytes::build_statistics(&array, type_.clone()))
            } else {
                None
            };
            fixed_len_bytes::array_to_page(&array, options, type_, statistics)
        }
        DataType::FixedSizeBinary(_) => {
            let type_ = type_;
            let array = array.as_any().downcast_ref().unwrap();
            let statistics = if options.write_statistics {
                Some(fixed_len_bytes::build_statistics(array, type_.clone()))
            } else {
                None
            };

            fixed_len_bytes::array_to_page(array, options, type_, statistics)
        }
        DataType::Decimal(precision, _) => {
            let type_ = type_;
            let precision = *precision;
            let array = array
                .as_any()
                .downcast_ref::<PrimitiveArray<i128>>()
                .unwrap();
            if precision <= 9 {
                let values = array
                    .values()
                    .iter()
                    .map(|x| *x as i32)
                    .collect::<Vec<_>>()
                    .into();

                let array =
                    PrimitiveArray::<i32>::new(DataType::Int32, values, array.validity().cloned());
                primitive::array_to_page_integer::<i32, i32>(&array, options, type_, encoding)
            } else if precision <= 18 {
                let values = array
                    .values()
                    .iter()
                    .map(|x| *x as i64)
                    .collect::<Vec<_>>()
                    .into();

                let array =
                    PrimitiveArray::<i64>::new(DataType::Int64, values, array.validity().cloned());
                primitive::array_to_page_integer::<i64, i64>(&array, options, type_, encoding)
            } else {
                let size = decimal_length_from_precision(precision);

                let statistics = if options.write_statistics {
                    let stats =
                        fixed_len_bytes::build_statistics_decimal(array, type_.clone(), size);
                    Some(stats)
                } else {
                    None
                };

                let mut values = Vec::<u8>::with_capacity(size * array.len());
                array.values().iter().for_each(|x| {
                    let bytes = &x.to_be_bytes()[16 - size..];
                    values.extend_from_slice(bytes)
                });
                let array = FixedSizeBinaryArray::new(
                    DataType::FixedSizeBinary(size),
                    values.into(),
                    array.validity().cloned(),
                );
                fixed_len_bytes::array_to_page(&array, options, type_, statistics)
            }
        }
        other => Err(Error::NotYetImplemented(format!(
            "Writing parquet pages for data type {other:?}"
        ))),
    }
    .map(Page::Data)
}

fn array_to_page_nested(
    array: &dyn Array,
    type_: ParquetPrimitiveType,
    nested: &[Nested],
    options: WriteOptions,
    _encoding: Encoding,
) -> Result<Page> {
    use DataType::*;
    match array.data_type().to_logical_type() {
        Null => {
            let array = Int32Array::new_null(DataType::Int32, array.len());
            primitive::nested_array_to_page::<i32, i32>(&array, options, type_, nested)
        }
        Boolean => {
            let array = array.as_any().downcast_ref().unwrap();
            boolean::nested_array_to_page(array, options, type_, nested)
        }
        Utf8 => {
            let array = array.as_any().downcast_ref().unwrap();
            utf8::nested_array_to_page::<i32>(array, options, type_, nested)
        }
        LargeUtf8 => {
            let array = array.as_any().downcast_ref().unwrap();
            utf8::nested_array_to_page::<i64>(array, options, type_, nested)
        }
        Binary => {
            let array = array.as_any().downcast_ref().unwrap();
            binary::nested_array_to_page::<i32>(array, options, type_, nested)
        }
        LargeBinary => {
            let array = array.as_any().downcast_ref().unwrap();
            binary::nested_array_to_page::<i64>(array, options, type_, nested)
        }
        UInt8 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<u8, i32>(array, options, type_, nested)
        }
        UInt16 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<u16, i32>(array, options, type_, nested)
        }
        UInt32 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<u32, i32>(array, options, type_, nested)
        }
        UInt64 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<u64, i64>(array, options, type_, nested)
        }
        Int8 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<i8, i32>(array, options, type_, nested)
        }
        Int16 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<i16, i32>(array, options, type_, nested)
        }
        Int32 | Date32 | Time32(_) => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<i32, i32>(array, options, type_, nested)
        }
        Int64 | Date64 | Time64(_) | Timestamp(_, _) | Duration(_) => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<i64, i64>(array, options, type_, nested)
        }
        Float32 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<f32, f32>(array, options, type_, nested)
        }
        Float64 => {
            let array = array.as_any().downcast_ref().unwrap();
            primitive::nested_array_to_page::<f64, f64>(array, options, type_, nested)
        }
        other => Err(Error::NotYetImplemented(format!(
            "Writing nested parquet pages for data type {other:?}"
        ))),
    }
    .map(Page::Data)
}

fn transverse_recursive<T, F: Fn(&DataType) -> T + Clone>(
    data_type: &DataType,
    map: F,
    encodings: &mut Vec<T>,
) {
    use crate::datatypes::PhysicalType::*;
    match data_type.to_physical_type() {
        Null | Boolean | Primitive(_) | Binary | FixedSizeBinary | LargeBinary | Utf8
        | Dictionary(_) | LargeUtf8 => encodings.push(map(data_type)),
        List | FixedSizeList | LargeList => {
            let a = data_type.to_logical_type();
            if let DataType::List(inner) = a {
                transverse_recursive(&inner.data_type, map, encodings)
            } else if let DataType::LargeList(inner) = a {
                transverse_recursive(&inner.data_type, map, encodings)
            } else if let DataType::FixedSizeList(inner, _) = a {
                transverse_recursive(&inner.data_type, map, encodings)
            } else {
                unreachable!()
            }
        }
        Struct => {
            if let DataType::Struct(fields) = data_type.to_logical_type() {
                for field in fields {
                    transverse_recursive(&field.data_type, map.clone(), encodings)
                }
            } else {
                unreachable!()
            }
        }
        Union => todo!(),
        Map => todo!(),
    }
}

/// Transverses the `data_type` up to its (parquet) columns and returns a vector of
/// items based on `map`.
/// This is used to assign an [`Encoding`] to every parquet column based on the columns' type (see example)
/// # Example
/// ```
/// use arrow2::io::parquet::write::{transverse, Encoding};
/// use arrow2::datatypes::{DataType, Field};
///
/// let dt = DataType::Struct(vec![
///     Field::new("a", DataType::Int64, true),
///     Field::new("b", DataType::List(Box::new(Field::new("item", DataType::Int32, true))), true),
/// ]);
///
/// let encodings = transverse(&dt, |dt| Encoding::Plain);
/// assert_eq!(encodings, vec![Encoding::Plain, Encoding::Plain]);
/// ```
pub fn transverse<T, F: Fn(&DataType) -> T + Clone>(data_type: &DataType, map: F) -> Vec<T> {
    let mut encodings = vec![];
    transverse_recursive(data_type, map, &mut encodings);
    encodings
}