1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
//! This module has a single entry point, [`parquet_to_arrow_schema`].
use parquet2::schema::{
    types::{
        FieldInfo, GroupConvertedType, GroupLogicalType, IntegerType, ParquetType, PhysicalType,
        PrimitiveConvertedType, PrimitiveLogicalType, PrimitiveType, TimeUnit as ParquetTimeUnit,
    },
    Repetition,
};

use crate::datatypes::{DataType, Field, IntervalUnit, TimeUnit};

/// Converts [`ParquetType`]s to a [`Field`], ignoring parquet fields that do not contain
/// any physical column.
pub fn parquet_to_arrow_schema(fields: &[ParquetType]) -> Vec<Field> {
    fields.iter().filter_map(to_field).collect::<Vec<_>>()
}

fn from_int32(
    logical_type: Option<PrimitiveLogicalType>,
    converted_type: Option<PrimitiveConvertedType>,
) -> DataType {
    use PrimitiveLogicalType::*;
    match (logical_type, converted_type) {
        // handle logical types first
        (Some(Integer(t)), _) => match t {
            IntegerType::Int8 => DataType::Int8,
            IntegerType::Int16 => DataType::Int16,
            IntegerType::Int32 => DataType::Int32,
            IntegerType::UInt8 => DataType::UInt8,
            IntegerType::UInt16 => DataType::UInt16,
            IntegerType::UInt32 => DataType::UInt32,
            // The above are the only possible annotations for parquet's int32. Anything else
            // is a deviation to the parquet specification and we ignore
            _ => DataType::Int32,
        },
        (Some(Decimal(precision, scale)), _) => DataType::Decimal(precision, scale),
        (Some(Date), _) => DataType::Date32,
        (Some(Time { unit, .. }), _) => match unit {
            ParquetTimeUnit::Milliseconds => DataType::Time32(TimeUnit::Millisecond),
            // MILLIS is the only possible annotation for parquet's int32. Anything else
            // is a deviation to the parquet specification and we ignore
            _ => DataType::Int32,
        },
        // handle converted types:
        (_, Some(PrimitiveConvertedType::Uint8)) => DataType::UInt8,
        (_, Some(PrimitiveConvertedType::Uint16)) => DataType::UInt16,
        (_, Some(PrimitiveConvertedType::Uint32)) => DataType::UInt32,
        (_, Some(PrimitiveConvertedType::Int8)) => DataType::Int8,
        (_, Some(PrimitiveConvertedType::Int16)) => DataType::Int16,
        (_, Some(PrimitiveConvertedType::Int32)) => DataType::Int32,
        (_, Some(PrimitiveConvertedType::Date)) => DataType::Date32,
        (_, Some(PrimitiveConvertedType::TimeMillis)) => DataType::Time32(TimeUnit::Millisecond),
        (_, Some(PrimitiveConvertedType::Decimal(precision, scale))) => {
            DataType::Decimal(precision, scale)
        }
        (_, _) => DataType::Int32,
    }
}

fn from_int64(
    logical_type: Option<PrimitiveLogicalType>,
    converted_type: Option<PrimitiveConvertedType>,
) -> DataType {
    use PrimitiveLogicalType::*;
    match (logical_type, converted_type) {
        // handle logical types first
        (Some(Integer(integer)), _) => match integer {
            IntegerType::UInt64 => DataType::UInt64,
            IntegerType::Int64 => DataType::Int64,
            _ => DataType::Int64,
        },
        (
            Some(Timestamp {
                is_adjusted_to_utc,
                unit,
            }),
            _,
        ) => {
            let timezone = if is_adjusted_to_utc {
                // https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
                // A TIMESTAMP with isAdjustedToUTC=true is defined as [...] elapsed since the Unix epoch
                Some("+00:00".to_string())
            } else {
                // PARQUET:
                // https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
                // A TIMESTAMP with isAdjustedToUTC=false represents [...] such
                // timestamps should always be displayed the same way, regardless of the local time zone in effect
                // ARROW:
                // https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
                // If the time zone is null or equal to an empty string, the data is "time
                // zone naive" and shall be displayed *as is* to the user, not localized
                // to the locale of the user.
                None
            };

            match unit {
                ParquetTimeUnit::Milliseconds => {
                    DataType::Timestamp(TimeUnit::Millisecond, timezone)
                }
                ParquetTimeUnit::Microseconds => {
                    DataType::Timestamp(TimeUnit::Microsecond, timezone)
                }
                ParquetTimeUnit::Nanoseconds => DataType::Timestamp(TimeUnit::Nanosecond, timezone),
            }
        }
        (Some(Time { unit, .. }), _) => match unit {
            ParquetTimeUnit::Microseconds => DataType::Time64(TimeUnit::Microsecond),
            ParquetTimeUnit::Nanoseconds => DataType::Time64(TimeUnit::Nanosecond),
            // MILLIS is only possible for int32. Appearing in int64 is a deviation
            // to parquet's spec, which we ignore
            _ => DataType::Int64,
        },
        (Some(Decimal(precision, scale)), _) => DataType::Decimal(precision, scale),
        // handle converted types:
        (_, Some(PrimitiveConvertedType::TimeMicros)) => DataType::Time64(TimeUnit::Microsecond),
        (_, Some(PrimitiveConvertedType::TimestampMillis)) => {
            DataType::Timestamp(TimeUnit::Millisecond, None)
        }
        (_, Some(PrimitiveConvertedType::TimestampMicros)) => {
            DataType::Timestamp(TimeUnit::Microsecond, None)
        }
        (_, Some(PrimitiveConvertedType::Int64)) => DataType::Int64,
        (_, Some(PrimitiveConvertedType::Uint64)) => DataType::UInt64,
        (_, Some(PrimitiveConvertedType::Decimal(precision, scale))) => {
            DataType::Decimal(precision, scale)
        }

        (_, _) => DataType::Int64,
    }
}

fn from_byte_array(
    logical_type: &Option<PrimitiveLogicalType>,
    converted_type: &Option<PrimitiveConvertedType>,
) -> DataType {
    match (logical_type, converted_type) {
        (Some(PrimitiveLogicalType::String), _) => DataType::Utf8,
        (Some(PrimitiveLogicalType::Json), _) => DataType::Binary,
        (Some(PrimitiveLogicalType::Bson), _) => DataType::Binary,
        (Some(PrimitiveLogicalType::Enum), _) => DataType::Binary,
        (_, Some(PrimitiveConvertedType::Json)) => DataType::Binary,
        (_, Some(PrimitiveConvertedType::Bson)) => DataType::Binary,
        (_, Some(PrimitiveConvertedType::Enum)) => DataType::Binary,
        (_, Some(PrimitiveConvertedType::Utf8)) => DataType::Utf8,
        (_, _) => DataType::Binary,
    }
}

fn from_fixed_len_byte_array(
    length: usize,
    logical_type: Option<PrimitiveLogicalType>,
    converted_type: Option<PrimitiveConvertedType>,
) -> DataType {
    match (logical_type, converted_type) {
        (Some(PrimitiveLogicalType::Decimal(precision, scale)), _) => {
            DataType::Decimal(precision, scale)
        }
        (None, Some(PrimitiveConvertedType::Decimal(precision, scale))) => {
            DataType::Decimal(precision, scale)
        }
        (None, Some(PrimitiveConvertedType::Interval)) => {
            // There is currently no reliable way of determining which IntervalUnit
            // to return. Thus without the original Arrow schema, the results
            // would be incorrect if all 12 bytes of the interval are populated
            DataType::Interval(IntervalUnit::DayTime)
        }
        _ => DataType::FixedSizeBinary(length),
    }
}

/// Maps a [`PhysicalType`] with optional metadata to a [`DataType`]
fn to_primitive_type_inner(primitive_type: &PrimitiveType) -> DataType {
    match primitive_type.physical_type {
        PhysicalType::Boolean => DataType::Boolean,
        PhysicalType::Int32 => {
            from_int32(primitive_type.logical_type, primitive_type.converted_type)
        }
        PhysicalType::Int64 => {
            from_int64(primitive_type.logical_type, primitive_type.converted_type)
        }
        PhysicalType::Int96 => DataType::Timestamp(TimeUnit::Nanosecond, None),
        PhysicalType::Float => DataType::Float32,
        PhysicalType::Double => DataType::Float64,
        PhysicalType::ByteArray => {
            from_byte_array(&primitive_type.logical_type, &primitive_type.converted_type)
        }
        PhysicalType::FixedLenByteArray(length) => from_fixed_len_byte_array(
            length,
            primitive_type.logical_type,
            primitive_type.converted_type,
        ),
    }
}

/// Entry point for converting parquet primitive type to arrow type.
///
/// This function takes care of repetition.
fn to_primitive_type(primitive_type: &PrimitiveType) -> DataType {
    let base_type = to_primitive_type_inner(primitive_type);

    if primitive_type.field_info.repetition == Repetition::Repeated {
        DataType::List(Box::new(Field::new(
            &primitive_type.field_info.name,
            base_type,
            is_nullable(&primitive_type.field_info),
        )))
    } else {
        base_type
    }
}

fn non_repeated_group(
    logical_type: &Option<GroupLogicalType>,
    converted_type: &Option<GroupConvertedType>,
    fields: &[ParquetType],
    parent_name: &str,
) -> Option<DataType> {
    debug_assert!(!fields.is_empty());
    match (logical_type, converted_type) {
        (Some(GroupLogicalType::List), _) => to_list(fields, parent_name),
        (None, Some(GroupConvertedType::List)) => to_list(fields, parent_name),
        (Some(GroupLogicalType::Map), _) => to_list(fields, parent_name),
        (None, Some(GroupConvertedType::Map) | Some(GroupConvertedType::MapKeyValue)) => {
            to_map(fields)
        }
        _ => to_struct(fields),
    }
}

/// Converts a parquet group type to an arrow [`DataType::Struct`].
/// Returns [`None`] if all its fields are empty
fn to_struct(fields: &[ParquetType]) -> Option<DataType> {
    let fields = fields.iter().filter_map(to_field).collect::<Vec<Field>>();
    if fields.is_empty() {
        None
    } else {
        Some(DataType::Struct(fields))
    }
}

/// Converts a parquet group type to an arrow [`DataType::Struct`].
/// Returns [`None`] if all its fields are empty
fn to_map(fields: &[ParquetType]) -> Option<DataType> {
    let inner = to_field(&fields[0])?;
    Some(DataType::Map(Box::new(inner), false))
}

/// Entry point for converting parquet group type.
///
/// This function takes care of logical type and repetition.
fn to_group_type(
    field_info: &FieldInfo,
    logical_type: &Option<GroupLogicalType>,
    converted_type: &Option<GroupConvertedType>,
    fields: &[ParquetType],
    parent_name: &str,
) -> Option<DataType> {
    debug_assert!(!fields.is_empty());
    if field_info.repetition == Repetition::Repeated {
        Some(DataType::List(Box::new(Field::new(
            &field_info.name,
            to_struct(fields)?,
            is_nullable(field_info),
        ))))
    } else {
        non_repeated_group(logical_type, converted_type, fields, parent_name)
    }
}

/// Checks whether this schema is nullable.
pub(crate) fn is_nullable(field_info: &FieldInfo) -> bool {
    match field_info.repetition {
        Repetition::Optional => true,
        Repetition::Repeated => true,
        Repetition::Required => false,
    }
}

/// Converts parquet schema to arrow field.
/// Returns `None` iff the parquet type has no associated primitive types,
/// i.e. if it is a column-less group type.
fn to_field(type_: &ParquetType) -> Option<Field> {
    Some(Field::new(
        &type_.get_field_info().name,
        to_data_type(type_)?,
        is_nullable(type_.get_field_info()),
    ))
}

/// Converts a parquet list to arrow list.
///
/// To fully understand this algorithm, please refer to
/// [parquet doc](https://github.com/apache/parquet-format/blob/master/LogicalTypes.md).
fn to_list(fields: &[ParquetType], parent_name: &str) -> Option<DataType> {
    let item = fields.first().unwrap();

    let item_type = match item {
        ParquetType::PrimitiveType(primitive) => Some(to_primitive_type_inner(primitive)),
        ParquetType::GroupType { fields, .. } => {
            if fields.len() == 1
                && item.name() != "array"
                && item.name() != format!("{parent_name}_tuple")
            {
                // extract the repetition field
                let nested_item = fields.first().unwrap();
                to_data_type(nested_item)
            } else {
                to_struct(fields)
            }
        }
    }?;

    // Check that the name of the list child is "list", in which case we
    // get the child nullability and name (normally "element") from the nested
    // group type.
    // Without this step, the child incorrectly inherits the parent's optionality
    let (list_item_name, item_is_optional) = match item {
        ParquetType::GroupType {
            field_info, fields, ..
        } if field_info.name == "list" && fields.len() == 1 => {
            let field = fields.first().unwrap();
            (
                &field.get_field_info().name,
                field.get_field_info().repetition != Repetition::Required,
            )
        }
        _ => (
            &item.get_field_info().name,
            item.get_field_info().repetition != Repetition::Required,
        ),
    };

    Some(DataType::List(Box::new(Field::new(
        list_item_name,
        item_type,
        item_is_optional,
    ))))
}

/// Converts parquet schema to arrow data type.
///
/// This function discards schema name.
///
/// If this schema is a primitive type and not included in the leaves, the result is
/// Ok(None).
///
/// If this schema is a group type and none of its children is reserved in the
/// conversion, the result is Ok(None).
pub(crate) fn to_data_type(type_: &ParquetType) -> Option<DataType> {
    match type_ {
        ParquetType::PrimitiveType(primitive) => Some(to_primitive_type(primitive)),
        ParquetType::GroupType {
            field_info,
            logical_type,
            converted_type,
            fields,
        } => {
            if fields.is_empty() {
                None
            } else {
                to_group_type(
                    field_info,
                    logical_type,
                    converted_type,
                    fields,
                    &field_info.name,
                )
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use parquet2::metadata::SchemaDescriptor;

    use super::*;

    use crate::datatypes::{DataType, Field, TimeUnit};
    use crate::error::Result;

    #[test]
    fn test_flat_primitives() -> Result<()> {
        let message = "
        message test_schema {
            REQUIRED BOOLEAN boolean;
            REQUIRED INT32   int8  (INT_8);
            REQUIRED INT32   int16 (INT_16);
            REQUIRED INT32   uint8 (INTEGER(8,false));
            REQUIRED INT32   uint16 (INTEGER(16,false));
            REQUIRED INT32   int32;
            REQUIRED INT64   int64 ;
            OPTIONAL DOUBLE  double;
            OPTIONAL FLOAT   float;
            OPTIONAL BINARY  string (UTF8);
            OPTIONAL BINARY  string_2 (STRING);
        }
        ";
        let expected = &[
            Field::new("boolean", DataType::Boolean, false),
            Field::new("int8", DataType::Int8, false),
            Field::new("int16", DataType::Int16, false),
            Field::new("uint8", DataType::UInt8, false),
            Field::new("uint16", DataType::UInt16, false),
            Field::new("int32", DataType::Int32, false),
            Field::new("int64", DataType::Int64, false),
            Field::new("double", DataType::Float64, true),
            Field::new("float", DataType::Float32, true),
            Field::new("string", DataType::Utf8, true),
            Field::new("string_2", DataType::Utf8, true),
        ];

        let parquet_schema = SchemaDescriptor::try_from_message(message)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(fields, expected);
        Ok(())
    }

    #[test]
    fn test_byte_array_fields() -> Result<()> {
        let message = "
        message test_schema {
            REQUIRED BYTE_ARRAY binary;
            REQUIRED FIXED_LEN_BYTE_ARRAY (20) fixed_binary;
        }
        ";
        let expected = vec![
            Field::new("binary", DataType::Binary, false),
            Field::new("fixed_binary", DataType::FixedSizeBinary(20), false),
        ];

        let parquet_schema = SchemaDescriptor::try_from_message(message)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(fields, expected);
        Ok(())
    }

    #[test]
    fn test_duplicate_fields() -> Result<()> {
        let message = "
        message test_schema {
            REQUIRED BOOLEAN boolean;
            REQUIRED INT32 int8 (INT_8);
        }
        ";
        let expected = &[
            Field::new("boolean", DataType::Boolean, false),
            Field::new("int8", DataType::Int8, false),
        ];

        let parquet_schema = SchemaDescriptor::try_from_message(message)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(fields, expected);
        Ok(())
    }

    #[test]
    fn test_parquet_lists() -> Result<()> {
        let mut arrow_fields = Vec::new();

        // LIST encoding example taken from parquet-format/LogicalTypes.md
        let message_type = "
        message test_schema {
          REQUIRED GROUP my_list (LIST) {
            REPEATED GROUP list {
              OPTIONAL BINARY element (UTF8);
            }
          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED GROUP list {
              REQUIRED BINARY element (UTF8);
            }
          }
          OPTIONAL GROUP array_of_arrays (LIST) {
            REPEATED GROUP list {
              REQUIRED GROUP element (LIST) {
                REPEATED GROUP list {
                  REQUIRED INT32 element;
                }
              }
            }
          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED GROUP element {
              REQUIRED BINARY str (UTF8);
            }
          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED INT32 element;
          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED GROUP element {
              REQUIRED BINARY str (UTF8);
              REQUIRED INT32 num;
            }
          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED GROUP array {
              REQUIRED BINARY str (UTF8);
            }

          }
          OPTIONAL GROUP my_list (LIST) {
            REPEATED GROUP my_list_tuple {
              REQUIRED BINARY str (UTF8);
            }
          }
          REPEATED INT32 name;
        }
        ";

        // // List<String> (list non-null, elements nullable)
        // required group my_list (LIST) {
        //   repeated group list {
        //     optional binary element (UTF8);
        //   }
        // }
        {
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, true))),
                false,
            ));
        }

        // // List<String> (list nullable, elements non-null)
        // optional group my_list (LIST) {
        //   repeated group list {
        //     required binary element (UTF8);
        //   }
        // }
        {
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, false))),
                true,
            ));
        }

        // Element types can be nested structures. For example, a list of lists:
        //
        // // List<List<Integer>>
        // optional group array_of_arrays (LIST) {
        //   repeated group list {
        //     required group element (LIST) {
        //       repeated group list {
        //         required int32 element;
        //       }
        //     }
        //   }
        // }
        {
            let arrow_inner_list =
                DataType::List(Box::new(Field::new("element", DataType::Int32, false)));
            arrow_fields.push(Field::new(
                "array_of_arrays",
                DataType::List(Box::new(Field::new("element", arrow_inner_list, false))),
                true,
            ));
        }

        // // List<String> (list nullable, elements non-null)
        // optional group my_list (LIST) {
        //   repeated group element {
        //     required binary str (UTF8);
        //   };
        // }
        {
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, true))),
                true,
            ));
        }

        // // List<Integer> (nullable list, non-null elements)
        // optional group my_list (LIST) {
        //   repeated int32 element;
        // }
        {
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("element", DataType::Int32, true))),
                true,
            ));
        }

        // // List<Tuple<String, Integer>> (nullable list, non-null elements)
        // optional group my_list (LIST) {
        //   repeated group element {
        //     required binary str (UTF8);
        //     required int32 num;
        //   };
        // }
        {
            let arrow_struct = DataType::Struct(vec![
                Field::new("str", DataType::Utf8, false),
                Field::new("num", DataType::Int32, false),
            ]);
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("element", arrow_struct, true))),
                true,
            ));
        }

        // // List<OneTuple<String>> (nullable list, non-null elements)
        // optional group my_list (LIST) {
        //   repeated group array {
        //     required binary str (UTF8);
        //   };
        // }
        // Special case: group is named array
        {
            let arrow_struct = DataType::Struct(vec![Field::new("str", DataType::Utf8, false)]);
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("array", arrow_struct, true))),
                true,
            ));
        }

        // // List<OneTuple<String>> (nullable list, non-null elements)
        // optional group my_list (LIST) {
        //   repeated group my_list_tuple {
        //     required binary str (UTF8);
        //   };
        // }
        // Special case: group named ends in _tuple
        {
            let arrow_struct = DataType::Struct(vec![Field::new("str", DataType::Utf8, false)]);
            arrow_fields.push(Field::new(
                "my_list",
                DataType::List(Box::new(Field::new("my_list_tuple", arrow_struct, true))),
                true,
            ));
        }

        // One-level encoding: Only allows required lists with required cells
        //   repeated value_type name
        {
            arrow_fields.push(Field::new(
                "name",
                DataType::List(Box::new(Field::new("name", DataType::Int32, true))),
                true,
            ));
        }

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }

    #[test]
    fn test_parquet_list_nullable() -> Result<()> {
        let mut arrow_fields = Vec::new();

        let message_type = "
        message test_schema {
          REQUIRED GROUP my_list1 (LIST) {
            REPEATED GROUP list {
              OPTIONAL BINARY element (UTF8);
            }
          }
          OPTIONAL GROUP my_list2 (LIST) {
            REPEATED GROUP list {
              REQUIRED BINARY element (UTF8);
            }
          }
          REQUIRED GROUP my_list3 (LIST) {
            REPEATED GROUP list {
              REQUIRED BINARY element (UTF8);
            }
          }
        }
        ";

        // // List<String> (list non-null, elements nullable)
        // required group my_list1 (LIST) {
        //   repeated group list {
        //     optional binary element (UTF8);
        //   }
        // }
        {
            arrow_fields.push(Field::new(
                "my_list1",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, true))),
                false,
            ));
        }

        // // List<String> (list nullable, elements non-null)
        // optional group my_list2 (LIST) {
        //   repeated group list {
        //     required binary element (UTF8);
        //   }
        // }
        {
            arrow_fields.push(Field::new(
                "my_list2",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, false))),
                true,
            ));
        }

        // // List<String> (list non-null, elements non-null)
        // repeated group my_list3 (LIST) {
        //   repeated group list {
        //     required binary element (UTF8);
        //   }
        // }
        {
            arrow_fields.push(Field::new(
                "my_list3",
                DataType::List(Box::new(Field::new("element", DataType::Utf8, false))),
                false,
            ));
        }

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }

    #[test]
    fn test_nested_schema() -> Result<()> {
        let mut arrow_fields = Vec::new();
        {
            let group1_fields = vec![
                Field::new("leaf1", DataType::Boolean, false),
                Field::new("leaf2", DataType::Int32, false),
            ];
            let group1_struct = Field::new("group1", DataType::Struct(group1_fields), false);
            arrow_fields.push(group1_struct);

            let leaf3_field = Field::new("leaf3", DataType::Int64, false);
            arrow_fields.push(leaf3_field);
        }

        let message_type = "
        message test_schema {
          REQUIRED GROUP group1 {
            REQUIRED BOOLEAN leaf1;
            REQUIRED INT32 leaf2;
          }
          REQUIRED INT64 leaf3;
        }
        ";

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }

    #[test]
    fn test_repeated_nested_schema() -> Result<()> {
        let mut arrow_fields = Vec::new();
        {
            arrow_fields.push(Field::new("leaf1", DataType::Int32, true));

            let inner_group_list = Field::new(
                "innerGroup",
                DataType::List(Box::new(Field::new(
                    "innerGroup",
                    DataType::Struct(vec![Field::new("leaf3", DataType::Int32, true)]),
                    true,
                ))),
                true,
            );

            let outer_group_list = Field::new(
                "outerGroup",
                DataType::List(Box::new(Field::new(
                    "outerGroup",
                    DataType::Struct(vec![
                        Field::new("leaf2", DataType::Int32, true),
                        inner_group_list,
                    ]),
                    true,
                ))),
                true,
            );
            arrow_fields.push(outer_group_list);
        }

        let message_type = "
        message test_schema {
          OPTIONAL INT32 leaf1;
          REPEATED GROUP outerGroup {
            OPTIONAL INT32 leaf2;
            REPEATED GROUP innerGroup {
              OPTIONAL INT32 leaf3;
            }
          }
        }
        ";

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }

    #[test]
    fn test_column_desc_to_field() -> Result<()> {
        let message_type = "
        message test_schema {
            REQUIRED BOOLEAN boolean;
            REQUIRED INT32   int8  (INT_8);
            REQUIRED INT32   uint8 (INTEGER(8,false));
            REQUIRED INT32   int16 (INT_16);
            REQUIRED INT32   uint16 (INTEGER(16,false));
            REQUIRED INT32   int32;
            REQUIRED INT64   int64;
            OPTIONAL DOUBLE  double;
            OPTIONAL FLOAT   float;
            OPTIONAL BINARY  string (UTF8);
            REPEATED BOOLEAN bools;
            OPTIONAL INT32   date       (DATE);
            OPTIONAL INT32   time_milli (TIME_MILLIS);
            OPTIONAL INT64   time_micro (TIME_MICROS);
            OPTIONAL INT64   time_nano (TIME(NANOS,false));
            OPTIONAL INT64   ts_milli (TIMESTAMP_MILLIS);
            REQUIRED INT64   ts_micro (TIMESTAMP_MICROS);
            REQUIRED INT64   ts_nano (TIMESTAMP(NANOS,true));
        }
        ";
        let arrow_fields = vec![
            Field::new("boolean", DataType::Boolean, false),
            Field::new("int8", DataType::Int8, false),
            Field::new("uint8", DataType::UInt8, false),
            Field::new("int16", DataType::Int16, false),
            Field::new("uint16", DataType::UInt16, false),
            Field::new("int32", DataType::Int32, false),
            Field::new("int64", DataType::Int64, false),
            Field::new("double", DataType::Float64, true),
            Field::new("float", DataType::Float32, true),
            Field::new("string", DataType::Utf8, true),
            Field::new(
                "bools",
                DataType::List(Box::new(Field::new("bools", DataType::Boolean, true))),
                true,
            ),
            Field::new("date", DataType::Date32, true),
            Field::new("time_milli", DataType::Time32(TimeUnit::Millisecond), true),
            Field::new("time_micro", DataType::Time64(TimeUnit::Microsecond), true),
            Field::new("time_nano", DataType::Time64(TimeUnit::Nanosecond), true),
            Field::new(
                "ts_milli",
                DataType::Timestamp(TimeUnit::Millisecond, None),
                true,
            ),
            Field::new(
                "ts_micro",
                DataType::Timestamp(TimeUnit::Microsecond, None),
                false,
            ),
            Field::new(
                "ts_nano",
                DataType::Timestamp(TimeUnit::Nanosecond, Some("+00:00".to_string())),
                false,
            ),
        ];

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }

    #[test]
    fn test_field_to_column_desc() -> Result<()> {
        let message_type = "
        message arrow_schema {
            REQUIRED BOOLEAN boolean;
            REQUIRED INT32   int8  (INT_8);
            REQUIRED INT32   int16 (INTEGER(16,true));
            REQUIRED INT32   int32;
            REQUIRED INT64   int64;
            OPTIONAL DOUBLE  double;
            OPTIONAL FLOAT   float;
            OPTIONAL BINARY  string (STRING);
            OPTIONAL GROUP   bools (LIST) {
                REPEATED GROUP list {
                    OPTIONAL BOOLEAN element;
                }
            }
            REQUIRED GROUP   bools_non_null (LIST) {
                REPEATED GROUP list {
                    REQUIRED BOOLEAN element;
                }
            }
            OPTIONAL INT32   date       (DATE);
            OPTIONAL INT32   time_milli (TIME(MILLIS,false));
            OPTIONAL INT64   time_micro (TIME_MICROS);
            OPTIONAL INT64   ts_milli (TIMESTAMP_MILLIS);
            REQUIRED INT64   ts_micro (TIMESTAMP(MICROS,false));
            REQUIRED GROUP struct {
                REQUIRED BOOLEAN bools;
                REQUIRED INT32 uint32 (INTEGER(32,false));
                REQUIRED GROUP   int32 (LIST) {
                    REPEATED GROUP list {
                        OPTIONAL INT32 element;
                    }
                }
            }
            REQUIRED BINARY  dictionary_strings (STRING);
        }
        ";

        let arrow_fields = vec![
            Field::new("boolean", DataType::Boolean, false),
            Field::new("int8", DataType::Int8, false),
            Field::new("int16", DataType::Int16, false),
            Field::new("int32", DataType::Int32, false),
            Field::new("int64", DataType::Int64, false),
            Field::new("double", DataType::Float64, true),
            Field::new("float", DataType::Float32, true),
            Field::new("string", DataType::Utf8, true),
            Field::new(
                "bools",
                DataType::List(Box::new(Field::new("element", DataType::Boolean, true))),
                true,
            ),
            Field::new(
                "bools_non_null",
                DataType::List(Box::new(Field::new("element", DataType::Boolean, false))),
                false,
            ),
            Field::new("date", DataType::Date32, true),
            Field::new("time_milli", DataType::Time32(TimeUnit::Millisecond), true),
            Field::new("time_micro", DataType::Time64(TimeUnit::Microsecond), true),
            Field::new(
                "ts_milli",
                DataType::Timestamp(TimeUnit::Millisecond, None),
                true,
            ),
            Field::new(
                "ts_micro",
                DataType::Timestamp(TimeUnit::Microsecond, None),
                false,
            ),
            Field::new(
                "struct",
                DataType::Struct(vec![
                    Field::new("bools", DataType::Boolean, false),
                    Field::new("uint32", DataType::UInt32, false),
                    Field::new(
                        "int32",
                        DataType::List(Box::new(Field::new("element", DataType::Int32, true))),
                        false,
                    ),
                ]),
                false,
            ),
            Field::new("dictionary_strings", DataType::Utf8, false),
        ];

        let parquet_schema = SchemaDescriptor::try_from_message(message_type)?;
        let fields = parquet_to_arrow_schema(parquet_schema.fields());

        assert_eq!(arrow_fields, fields);
        Ok(())
    }
}