1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
use crate::{bitmap::Bitmap, buffer::Buffer, datatypes::DataType, error::Error};
use super::Array;
mod ffi;
pub(super) mod fmt;
mod iterator;
mod mutable;
pub use mutable::*;
/// The Arrow's equivalent to an immutable `Vec<Option<[u8; size]>>`.
/// Cloning and slicing this struct is `O(1)`.
#[derive(Clone)]
pub struct FixedSizeBinaryArray {
size: usize, // this is redundant with `data_type`, but useful to not have to deconstruct the data_type.
data_type: DataType,
values: Buffer<u8>,
validity: Option<Bitmap>,
}
impl FixedSizeBinaryArray {
/// Creates a new [`FixedSizeBinaryArray`].
///
/// # Errors
/// This function returns an error iff:
/// * The `data_type`'s physical type is not [`crate::datatypes::PhysicalType::FixedSizeBinary`]
/// * The length of `values` is not a multiple of `size` in `data_type`
/// * the validity's length is not equal to `values.len() / size`.
pub fn try_new(
data_type: DataType,
values: Buffer<u8>,
validity: Option<Bitmap>,
) -> Result<Self, Error> {
let size = Self::maybe_get_size(&data_type)?;
if values.len() % size != 0 {
return Err(Error::oos(format!(
"values (of len {}) must be a multiple of size ({}) in FixedSizeBinaryArray.",
values.len(),
size
)));
}
let len = values.len() / size;
if validity
.as_ref()
.map_or(false, |validity| validity.len() != len)
{
return Err(Error::oos(
"validity mask length must be equal to the number of values divided by size",
));
}
Ok(Self {
size,
data_type,
values,
validity,
})
}
/// Creates a new [`FixedSizeBinaryArray`].
/// # Panics
/// This function panics iff:
/// * The `data_type`'s physical type is not [`crate::datatypes::PhysicalType::FixedSizeBinary`]
/// * The length of `values` is not a multiple of `size` in `data_type`
/// * the validity's length is not equal to `values.len() / size`.
pub fn new(data_type: DataType, values: Buffer<u8>, validity: Option<Bitmap>) -> Self {
Self::try_new(data_type, values, validity).unwrap()
}
/// Returns a new empty [`FixedSizeBinaryArray`].
pub fn new_empty(data_type: DataType) -> Self {
Self::new(data_type, Buffer::new(), None)
}
/// Returns a new null [`FixedSizeBinaryArray`].
pub fn new_null(data_type: DataType, length: usize) -> Self {
let size = Self::maybe_get_size(&data_type).unwrap();
Self::new(
data_type,
vec![0u8; length * size].into(),
Some(Bitmap::new_zeroed(length)),
)
}
/// Boxes self into a [`Box<dyn Array>`].
pub fn boxed(self) -> Box<dyn Array> {
Box::new(self)
}
/// Boxes self into a [`std::sync::Arc<dyn Array>`].
pub fn arced(self) -> std::sync::Arc<dyn Array> {
std::sync::Arc::new(self)
}
}
// must use
impl FixedSizeBinaryArray {
/// Returns a slice of this [`FixedSizeBinaryArray`].
/// # Implementation
/// This operation is `O(1)` as it amounts to increase 3 ref counts.
/// # Panics
/// panics iff `offset + length > self.len()`
#[must_use]
pub fn slice(&self, offset: usize, length: usize) -> Self {
assert!(
offset + length <= self.len(),
"the offset of the new Buffer cannot exceed the existing length"
);
unsafe { self.slice_unchecked(offset, length) }
}
/// Returns a slice of this [`FixedSizeBinaryArray`].
/// # Implementation
/// This operation is `O(1)` as it amounts to increase 3 ref counts.
/// # Safety
/// The caller must ensure that `offset + length <= self.len()`.
#[must_use]
pub unsafe fn slice_unchecked(&self, offset: usize, length: usize) -> Self {
let validity = self
.validity
.clone()
.map(|bitmap| bitmap.slice_unchecked(offset, length))
.and_then(|bitmap| (bitmap.unset_bits() > 0).then(|| bitmap));
let values = self
.values
.clone()
.slice_unchecked(offset * self.size, length * self.size);
Self {
data_type: self.data_type.clone(),
size: self.size,
values,
validity,
}
}
/// Returns this [`FixedSizeBinaryArray`] with a new validity.
/// # Panic
/// This function panics iff `validity.len() != self.len()`.
#[must_use]
pub fn with_validity(mut self, validity: Option<Bitmap>) -> Self {
self.set_validity(validity);
self
}
/// Sets the validity of this [`FixedSizeBinaryArray`].
/// # Panics
/// This function panics iff `validity.len() != self.len()`.
pub fn set_validity(&mut self, validity: Option<Bitmap>) {
if matches!(&validity, Some(bitmap) if bitmap.len() != self.len()) {
panic!("validity must be equal to the array's length")
}
self.validity = validity;
}
}
// accessors
impl FixedSizeBinaryArray {
/// Returns the length of this array
#[inline]
pub fn len(&self) -> usize {
self.values.len() / self.size
}
/// The optional validity.
#[inline]
pub fn validity(&self) -> Option<&Bitmap> {
self.validity.as_ref()
}
/// Returns the values allocated on this [`FixedSizeBinaryArray`].
pub fn values(&self) -> &Buffer<u8> {
&self.values
}
/// Returns value at position `i`.
/// # Panic
/// Panics iff `i >= self.len()`.
#[inline]
pub fn value(&self, i: usize) -> &[u8] {
assert!(i < self.len());
unsafe { self.value_unchecked(i) }
}
/// Returns the element at index `i` as &str
/// # Safety
/// Assumes that the `i < self.len`.
#[inline]
pub unsafe fn value_unchecked(&self, i: usize) -> &[u8] {
// soundness: invariant of the function.
self.values
.get_unchecked(i * self.size..(i + 1) * self.size)
}
/// Returns a new [`FixedSizeBinaryArray`] with a different logical type.
/// This is `O(1)`.
/// # Panics
/// Panics iff the data_type is not supported for the physical type.
#[inline]
pub fn to(self, data_type: DataType) -> Self {
match (
data_type.to_logical_type(),
self.data_type().to_logical_type(),
) {
(DataType::FixedSizeBinary(size_a), DataType::FixedSizeBinary(size_b))
if size_a == size_b => {}
_ => panic!("Wrong DataType"),
}
Self {
size: self.size,
data_type,
values: self.values,
validity: self.validity,
}
}
/// Returns the size
pub fn size(&self) -> usize {
self.size
}
}
impl FixedSizeBinaryArray {
pub(crate) fn maybe_get_size(data_type: &DataType) -> Result<usize, Error> {
match data_type.to_logical_type() {
DataType::FixedSizeBinary(size) => {
if *size == 0 {
return Err(Error::oos("FixedSizeBinaryArray expects a positive size"));
}
Ok(*size)
}
_ => Err(Error::oos(
"FixedSizeBinaryArray expects DataType::FixedSizeBinary",
)),
}
}
pub(crate) fn get_size(data_type: &DataType) -> usize {
Self::maybe_get_size(data_type).unwrap()
}
}
impl Array for FixedSizeBinaryArray {
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
#[inline]
fn len(&self) -> usize {
self.len()
}
#[inline]
fn data_type(&self) -> &DataType {
&self.data_type
}
fn validity(&self) -> Option<&Bitmap> {
self.validity.as_ref()
}
fn slice(&self, offset: usize, length: usize) -> Box<dyn Array> {
Box::new(self.slice(offset, length))
}
unsafe fn slice_unchecked(&self, offset: usize, length: usize) -> Box<dyn Array> {
Box::new(self.slice_unchecked(offset, length))
}
fn with_validity(&self, validity: Option<Bitmap>) -> Box<dyn Array> {
Box::new(self.clone().with_validity(validity))
}
fn to_boxed(&self) -> Box<dyn Array> {
Box::new(self.clone())
}
}
impl FixedSizeBinaryArray {
/// Creates a [`FixedSizeBinaryArray`] from an fallible iterator of optional `[u8]`.
pub fn try_from_iter<P: AsRef<[u8]>, I: IntoIterator<Item = Option<P>>>(
iter: I,
size: usize,
) -> Result<Self, Error> {
MutableFixedSizeBinaryArray::try_from_iter(iter, size).map(|x| x.into())
}
/// Creates a [`FixedSizeBinaryArray`] from an iterator of optional `[u8]`.
pub fn from_iter<P: AsRef<[u8]>, I: IntoIterator<Item = Option<P>>>(
iter: I,
size: usize,
) -> Self {
MutableFixedSizeBinaryArray::try_from_iter(iter, size)
.unwrap()
.into()
}
/// Creates a [`FixedSizeBinaryArray`] from a slice of arrays of bytes
pub fn from_slice<const N: usize, P: AsRef<[[u8; N]]>>(a: P) -> Self {
let values = a.as_ref().iter().flatten().copied().collect::<Vec<_>>();
Self::new(DataType::FixedSizeBinary(N), values.into(), None)
}
/// Creates a new [`FixedSizeBinaryArray`] from a slice of optional `[u8]`.
// Note: this can't be `impl From` because Rust does not allow double `AsRef` on it.
pub fn from<const N: usize, P: AsRef<[Option<[u8; N]>]>>(slice: P) -> Self {
MutableFixedSizeBinaryArray::from(slice).into()
}
}
pub trait FixedSizeBinaryValues {
fn values(&self) -> &[u8];
fn size(&self) -> usize;
}
impl FixedSizeBinaryValues for FixedSizeBinaryArray {
#[inline]
fn values(&self) -> &[u8] {
&self.values
}
#[inline]
fn size(&self) -> usize {
self.size
}
}