pub struct NaiveTime { /* private fields */ }
Expand description
ISO 8601 time without timezone. Allows for the nanosecond precision and optional leap second representation.
§Leap Second Handling
Since 1960s, the manmade atomic clock has been so accurate that it is much more accurate than Earth’s own motion. It became desirable to define the civil time in terms of the atomic clock, but that risks the desynchronization of the civil time from Earth. To account for this, the designers of the Coordinated Universal Time (UTC) made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. When the mean solar day is longer than the ideal (86,400 seconds), the error slowly accumulates and it is necessary to add a leap second to slow the UTC down a bit. (We may also remove a second to speed the UTC up a bit, but it never happened.) The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
Fast forward to the 21st century, we have seen 26 leap seconds from January 1972 to December 2015. Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. But those 26 seconds, and possibly more in the future, are never predictable, and whether to add a leap second or not is known only before 6 months. Internet-based clocks (via NTP) do account for known leap seconds, but the system API normally doesn’t (and often can’t, with no network connection) and there is no reliable way to retrieve leap second information.
Chrono does not try to accurately implement leap seconds; it is impossible. Rather, it allows for leap seconds but behaves as if there are no other leap seconds. Various operations will ignore any possible leap second(s) except when any of the operands were actually leap seconds.
If you cannot tolerate this behavior,
you must use a separate TimeZone
for the International Atomic Time (TAI).
TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
Chrono does not yet provide such implementation, but it is planned.
§Representing Leap Seconds
The leap second is indicated via fractional seconds more than 1 second. This makes possible to treat a leap second as the prior non-leap second if you don’t care about sub-second accuracy. You should use the proper formatting to get the raw leap second.
All methods accepting fractional seconds will accept such values.
use chrono::{NaiveDate, NaiveTime, Utc};
let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap();
let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1)
.unwrap()
.and_hms_micro_opt(8, 59, 59, 1_000_000)
.unwrap();
let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30)
.unwrap()
.and_hms_nano_opt(23, 59, 59, 1_000_000_000)
.unwrap()
.and_local_timezone(Utc)
.unwrap();
Note that the leap second can happen anytime given an appropriate time zone; 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. Practically speaking, though, by the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.
§Date And Time Arithmetics
As a concrete example, let’s assume that 03:00:60
and 04:00:60
are leap seconds.
In reality, of course, leap seconds are separated by at least 6 months.
We will also use some intuitive concise notations for the explanation.
Time + TimeDelta
(short for NaiveTime::overflowing_add_signed
):
03:00:00 + 1s = 03:00:01
.03:00:59 + 60s = 03:01:59
.03:00:59 + 61s = 03:02:00
.03:00:59 + 1s = 03:01:00
.03:00:60 + 1s = 03:01:00
. Note that the sum is identical to the previous.03:00:60 + 60s = 03:01:59
.03:00:60 + 61s = 03:02:00
.03:00:60.1 + 0.8s = 03:00:60.9
.
Time - TimeDelta
(short for NaiveTime::overflowing_sub_signed
):
03:00:00 - 1s = 02:59:59
.03:01:00 - 1s = 03:00:59
.03:01:00 - 60s = 03:00:00
.03:00:60 - 60s = 03:00:00
. Note that the result is identical to the previous.03:00:60.7 - 0.4s = 03:00:60.3
.03:00:60.7 - 0.9s = 03:00:59.8
.
Time - Time
(short for NaiveTime::signed_duration_since
):
04:00:00 - 03:00:00 = 3600s
.03:01:00 - 03:00:00 = 60s
.03:00:60 - 03:00:00 = 60s
. Note that the difference is identical to the previous.03:00:60.6 - 03:00:59.4 = 1.2s
.03:01:00 - 03:00:59.8 = 0.2s
.03:01:00 - 03:00:60.5 = 0.5s
. Note that the difference is larger than the previous, even though the leap second clearly follows the previous whole second.04:00:60.9 - 03:00:60.1 = (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = 60.9s + 3540s + 0.9s = 3601.8s
.
In general,
-
Time + TimeDelta
unconditionally equals toTimeDelta + Time
. -
Time - TimeDelta
unconditionally equals toTime + (-TimeDelta)
. -
Time1 - Time2
unconditionally equals to-(Time2 - Time1)
. -
Associativity does not generally hold, because
(Time + TimeDelta1) - TimeDelta2
no longer equals toTime + (TimeDelta1 - TimeDelta2)
for two positive durations.-
As a special case,
(Time + TimeDelta) - TimeDelta
also does not equal toTime
. -
If you can assume that all durations have the same sign, however, then the associativity holds:
(Time + TimeDelta1) + TimeDelta2
equals toTime + (TimeDelta1 + TimeDelta2)
for two positive durations.
-
§Reading And Writing Leap Seconds
The “typical” leap seconds on the minute boundary are correctly handled both in the formatting and parsing. The leap second in the human-readable representation will be represented as the second part being 60, as required by ISO 8601.
use chrono::{NaiveDate, Utc};
let dt = NaiveDate::from_ymd_opt(2015, 6, 30)
.unwrap()
.and_hms_milli_opt(23, 59, 59, 1_000)
.unwrap()
.and_local_timezone(Utc)
.unwrap();
assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z");
There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. They are allowed for the sake of completeness and consistency; there were several “exotic” time zone offsets with fractional minutes prior to UTC after all. For such cases the human-readable representation is ambiguous and would be read back to the next non-leap second.
A NaiveTime
with a leap second that is not on a minute boundary can only be created from a
DateTime
with fractional minutes as offset, or using
Timelike::with_nanosecond()
.
use chrono::{FixedOffset, NaiveDate, TimeZone};
let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36
let leap_sec_2015 =
NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap();
let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015);
assert_eq!(format!("{:?}", dt1), "2015-06-30T20:19:24-03:40:36");
assert_eq!(format!("{:?}", dt1.time()), "20:19:24");
let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec);
assert_eq!(format!("{:?}", dt2), "2015-06-30T20:19:24-03:40:36");
assert_eq!(format!("{:?}", dt2.time()), "20:19:24");
assert!(dt1.time() != dt2.time());
assert!(dt1.time().to_string() == dt2.time().to_string());
Since Chrono alone cannot determine any existence of leap seconds, there is absolutely no guarantee that the leap second read has actually happened.
Implementations§
source§impl NaiveTime
impl NaiveTime
sourcepub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
👎Deprecated since 0.4.23: use from_hms_opt()
instead
pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
from_hms_opt()
insteadMakes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*
methods with a subsecond parameter instead.
§Panics
Panics on invalid hour, minute and/or second.
sourcepub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute and second.
The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Errors
Returns None
on invalid hour, minute and/or second.
§Example
use chrono::NaiveTime;
let from_hms_opt = NaiveTime::from_hms_opt;
assert!(from_hms_opt(0, 0, 0).is_some());
assert!(from_hms_opt(23, 59, 59).is_some());
assert!(from_hms_opt(24, 0, 0).is_none());
assert!(from_hms_opt(23, 60, 0).is_none());
assert!(from_hms_opt(23, 59, 60).is_none());
sourcepub const fn from_hms_milli(
hour: u32,
min: u32,
sec: u32,
milli: u32,
) -> NaiveTime
👎Deprecated since 0.4.23: use from_hms_milli_opt()
instead
pub const fn from_hms_milli( hour: u32, min: u32, sec: u32, milli: u32, ) -> NaiveTime
from_hms_milli_opt()
insteadMakes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
§Panics
Panics on invalid hour, minute, second and/or millisecond.
sourcepub const fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32,
) -> Option<NaiveTime>
pub const fn from_hms_milli_opt( hour: u32, min: u32, sec: u32, milli: u32, ) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Errors
Returns None
on invalid hour, minute, second and/or millisecond.
§Example
use chrono::NaiveTime;
let from_hmsm_opt = NaiveTime::from_hms_milli_opt;
assert!(from_hmsm_opt(0, 0, 0, 0).is_some());
assert!(from_hmsm_opt(23, 59, 59, 999).is_some());
assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsm_opt(24, 0, 0, 0).is_none());
assert!(from_hmsm_opt(23, 60, 0, 0).is_none());
assert!(from_hmsm_opt(23, 59, 60, 0).is_none());
assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
sourcepub const fn from_hms_micro(
hour: u32,
min: u32,
sec: u32,
micro: u32,
) -> NaiveTime
👎Deprecated since 0.4.23: use from_hms_micro_opt()
instead
pub const fn from_hms_micro( hour: u32, min: u32, sec: u32, micro: u32, ) -> NaiveTime
from_hms_micro_opt()
insteadMakes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Panics
Panics on invalid hour, minute, second and/or microsecond.
sourcepub const fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32,
) -> Option<NaiveTime>
pub const fn from_hms_micro_opt( hour: u32, min: u32, sec: u32, micro: u32, ) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Errors
Returns None
on invalid hour, minute, second and/or microsecond.
§Example
use chrono::NaiveTime;
let from_hmsu_opt = NaiveTime::from_hms_micro_opt;
assert!(from_hmsu_opt(0, 0, 0, 0).is_some());
assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some());
assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsu_opt(24, 0, 0, 0).is_none());
assert!(from_hmsu_opt(23, 60, 0, 0).is_none());
assert!(from_hmsu_opt(23, 59, 60, 0).is_none());
assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
sourcepub const fn from_hms_nano(
hour: u32,
min: u32,
sec: u32,
nano: u32,
) -> NaiveTime
👎Deprecated since 0.4.23: use from_hms_nano_opt()
instead
pub const fn from_hms_nano( hour: u32, min: u32, sec: u32, nano: u32, ) -> NaiveTime
from_hms_nano_opt()
insteadMakes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Panics
Panics on invalid hour, minute, second and/or nanosecond.
sourcepub const fn from_hms_nano_opt(
hour: u32,
min: u32,
sec: u32,
nano: u32,
) -> Option<NaiveTime>
pub const fn from_hms_nano_opt( hour: u32, min: u32, sec: u32, nano: u32, ) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when sec == 59
.
§Errors
Returns None
on invalid hour, minute, second and/or nanosecond.
§Example
use chrono::NaiveTime;
let from_hmsn_opt = NaiveTime::from_hms_nano_opt;
assert!(from_hmsn_opt(0, 0, 0, 0).is_some());
assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some());
assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59
assert!(from_hmsn_opt(24, 0, 0, 0).is_none());
assert!(from_hmsn_opt(23, 60, 0, 0).is_none());
assert!(from_hmsn_opt(23, 59, 60, 0).is_none());
assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
sourcepub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
👎Deprecated since 0.4.23: use from_num_seconds_from_midnight_opt()
instead
pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
from_num_seconds_from_midnight_opt()
insteadMakes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when secs % 60 == 59
.
§Panics
Panics on invalid number of seconds and/or nanosecond.
sourcepub const fn from_num_seconds_from_midnight_opt(
secs: u32,
nano: u32,
) -> Option<NaiveTime>
pub const fn from_num_seconds_from_midnight_opt( secs: u32, nano: u32, ) -> Option<NaiveTime>
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
leap second, but only when secs % 60 == 59
.
§Errors
Returns None
on invalid number of seconds and/or nanosecond.
§Example
use chrono::NaiveTime;
let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt;
assert!(from_nsecs_opt(0, 0).is_some());
assert!(from_nsecs_opt(86399, 999_999_999).is_some());
assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59
assert!(from_nsecs_opt(86_400, 0).is_none());
assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
sourcepub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
Parses a string with the specified format string and returns a new NaiveTime
.
See the format::strftime
module
on the supported escape sequences.
§Example
use chrono::NaiveTime;
let parse_from_str = NaiveTime::parse_from_str;
assert_eq!(
parse_from_str("23:56:04", "%H:%M:%S"),
Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap())
);
assert_eq!(
parse_from_str("pm012345.6789", "%p%I%M%S%.f"),
Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap())
);
Date and offset is ignored for the purpose of parsing.
assert_eq!(
parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap())
);
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(
parse_from_str("08:59:60.123", "%H:%M:%S%.f"),
Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap())
);
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(parse_from_str("7:15", "%H:%M"), Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap()));
assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
assert!(parse_from_str("12", "%H").is_err());
assert!(parse_from_str("17:60", "%H:%M").is_err());
assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
Here %H
is for 24-hour clocks, unlike %I
,
and thus can be independently determined without AM/PM.
assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
sourcepub fn parse_and_remainder<'a>(
s: &'a str,
fmt: &str,
) -> ParseResult<(NaiveTime, &'a str)>
pub fn parse_and_remainder<'a>( s: &'a str, fmt: &str, ) -> ParseResult<(NaiveTime, &'a str)>
Parses a string from a user-specified format into a new NaiveTime
value, and a slice with
the remaining portion of the string.
See the format::strftime
module
on the supported escape sequences.
Similar to parse_from_str
.
§Example
let (time, remainder) =
NaiveTime::parse_and_remainder("3h4m33s trailing text", "%-Hh%-Mm%-Ss").unwrap();
assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap());
assert_eq!(remainder, " trailing text");
sourcepub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64)
pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64)
Adds given TimeDelta
to the current time, and also returns the number of seconds
in the integral number of days ignored from the addition.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap();
assert_eq!(
from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(11).unwrap()),
(from_hms(14, 4, 5), 0)
);
assert_eq!(
from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(23).unwrap()),
(from_hms(2, 4, 5), 86_400)
);
assert_eq!(
from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(-7).unwrap()),
(from_hms(20, 4, 5), -86_400)
);
sourcepub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64)
pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64)
Subtracts given TimeDelta
from the current time, and also returns the number of seconds
in the integral number of days ignored from the subtraction.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap();
assert_eq!(
from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(2).unwrap()),
(from_hms(1, 4, 5), 0)
);
assert_eq!(
from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(17).unwrap()),
(from_hms(10, 4, 5), 86_400)
);
assert_eq!(
from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(-22).unwrap()),
(from_hms(1, 4, 5), -86_400)
);
sourcepub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta
pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta
Subtracts another NaiveTime
from the current time.
Returns a TimeDelta
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap();
let since = NaiveTime::signed_duration_since;
assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), TimeDelta::zero());
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)),
TimeDelta::try_milliseconds(25).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)),
TimeDelta::try_milliseconds(975).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)),
TimeDelta::try_seconds(7).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)),
TimeDelta::try_seconds(5 * 60).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)),
TimeDelta::try_seconds(3 * 3600).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)),
TimeDelta::try_seconds(-3600).unwrap()
);
assert_eq!(
since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)),
TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap()
);
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)),
TimeDelta::try_seconds(1).unwrap());
assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)),
TimeDelta::try_milliseconds(1500).unwrap());
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)),
TimeDelta::try_seconds(60).unwrap());
assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)),
TimeDelta::try_seconds(1).unwrap());
assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)),
TimeDelta::try_seconds(61).unwrap());
sourcepub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
Formats the time with the specified formatting items.
Otherwise it is the same as the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
§Example
use chrono::format::strftime::StrftimeItems;
use chrono::NaiveTime;
let fmt = StrftimeItems::new("%H:%M:%S");
let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04");
assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
sourcepub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
§Example
use chrono::NaiveTime;
let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345");
assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04");
assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345");
assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
Trait Implementations§
source§impl Add<Duration> for NaiveTime
impl Add<Duration> for NaiveTime
Add std::time::Duration
to NaiveTime
.
This wraps around and never overflows or underflows. In particular the addition ignores integral number of days.
source§impl Add<FixedOffset> for NaiveTime
impl Add<FixedOffset> for NaiveTime
Add FixedOffset
to NaiveTime
.
This wraps around and never overflows or underflows. In particular the addition ignores integral number of days.
source§impl Add<TimeDelta> for NaiveTime
impl Add<TimeDelta> for NaiveTime
Add TimeDelta
to NaiveTime
.
This wraps around and never overflows or underflows. In particular the addition ignores integral number of days.
As a part of Chrono’s leap second handling, the addition assumes that there is no leap
second ever, except when the NaiveTime
itself represents a leap second in which case the
assumption becomes that there is exactly a single leap second ever.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 8, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-1).unwrap(), from_hmsm(3, 5, 6, 0));
assert_eq!(
from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(60 + 4).unwrap(),
from_hmsm(3, 6, 11, 0)
);
assert_eq!(
from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(7 * 60 * 60 - 6 * 60).unwrap(),
from_hmsm(9, 59, 7, 0)
);
assert_eq!(
from_hmsm(3, 5, 7, 0) + TimeDelta::try_milliseconds(80).unwrap(),
from_hmsm(3, 5, 7, 80)
);
assert_eq!(
from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(280).unwrap(),
from_hmsm(3, 5, 8, 230)
);
assert_eq!(
from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(-980).unwrap(),
from_hmsm(3, 5, 6, 970)
);
The addition wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(22*60*60).unwrap(), from_hmsm(1, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-8*60*60).unwrap(), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the addition assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), from_hmsm(3, 5, 59, 800));
assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 1_800));
assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), from_hmsm(3, 6, 0, 100));
assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), from_hmsm(3, 6, 9, 300));
assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), from_hmsm(3, 5, 50, 300));
assert_eq!(leap + TimeDelta::try_days(1).unwrap(), from_hmsm(3, 5, 59, 300));
source§impl AddAssign<Duration> for NaiveTime
impl AddAssign<Duration> for NaiveTime
Add-assign std::time::Duration
to NaiveTime
.
This wraps around and never overflows or underflows. In particular the addition ignores integral number of days.
source§fn add_assign(&mut self, rhs: Duration)
fn add_assign(&mut self, rhs: Duration)
+=
operation. Read moresource§impl AddAssign<TimeDelta> for NaiveTime
impl AddAssign<TimeDelta> for NaiveTime
Add-assign TimeDelta
to NaiveTime
.
This wraps around and never overflows or underflows. In particular the addition ignores integral number of days.
source§fn add_assign(&mut self, rhs: TimeDelta)
fn add_assign(&mut self, rhs: TimeDelta)
+=
operation. Read moresource§impl Debug for NaiveTime
impl Debug for NaiveTime
The Debug
output of the naive time t
is the same as
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
§Example
use chrono::NaiveTime;
assert_eq!(format!("{:?}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04");
assert_eq!(
format!("{:?}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()),
"23:56:04.012"
);
assert_eq!(
format!("{:?}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()),
"23:56:04.001234"
);
assert_eq!(
format!("{:?}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()),
"23:56:04.000123456"
);
Leap seconds may also be used.
assert_eq!(
format!("{:?}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()),
"06:59:60.500"
);
source§impl Default for NaiveTime
impl Default for NaiveTime
The default value for a NaiveTime is midnight, 00:00:00 exactly.
§Example
use chrono::NaiveTime;
let default_time = NaiveTime::default();
assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap());
source§impl<'de> Deserialize<'de> for NaiveTime
impl<'de> Deserialize<'de> for NaiveTime
source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
source§impl Display for NaiveTime
impl Display for NaiveTime
The Display
output of the naive time t
is the same as
t.format("%H:%M:%S%.f")
.
The string printed can be readily parsed via the parse
method on str
.
It should be noted that, for leap seconds not on the minute boundary, it may print a representation not distinguishable from non-leap seconds. This doesn’t matter in practice, since such leap seconds never happened. (By the time of the first leap second on 1972-06-30, every time zone offset around the world has standardized to the 5-minute alignment.)
§Example
use chrono::NaiveTime;
assert_eq!(format!("{}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04");
assert_eq!(
format!("{}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()),
"23:56:04.012"
);
assert_eq!(
format!("{}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()),
"23:56:04.001234"
);
assert_eq!(
format!("{}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()),
"23:56:04.000123456"
);
Leap seconds may also be used.
assert_eq!(
format!("{}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()),
"06:59:60.500"
);
source§impl FromStr for NaiveTime
impl FromStr for NaiveTime
Parsing a str
into a NaiveTime
uses the same format,
%H:%M:%S%.f
, as in Debug
and Display
.
§Example
use chrono::NaiveTime;
let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t));
let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t));
let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second
assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t));
// Seconds are optional
let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap();
assert_eq!("23:56".parse::<NaiveTime>(), Ok(t));
assert!("foo".parse::<NaiveTime>().is_err());
§type Err = ParseError
type Err = ParseError
source§impl Ord for NaiveTime
impl Ord for NaiveTime
source§impl PartialOrd for NaiveTime
impl PartialOrd for NaiveTime
source§impl Sub<Duration> for NaiveTime
impl Sub<Duration> for NaiveTime
Subtract std::time::Duration
from NaiveTime
.
This wraps around and never overflows or underflows. In particular the subtraction ignores integral number of days.
source§impl Sub<FixedOffset> for NaiveTime
impl Sub<FixedOffset> for NaiveTime
Subtract FixedOffset
from NaiveTime
.
This wraps around and never overflows or underflows. In particular the subtraction ignores integral number of days.
source§impl Sub<TimeDelta> for NaiveTime
impl Sub<TimeDelta> for NaiveTime
Subtract TimeDelta
from NaiveTime
.
This wraps around and never overflows or underflows.
In particular the subtraction ignores integral number of days.
This is the same as addition with a negated TimeDelta
.
As a part of Chrono’s leap second handling, the subtraction assumes that there is no leap
second ever, except when the NaiveTime
itself represents a leap second in which case the
assumption becomes that there is exactly a single leap second ever.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 6, 0));
assert_eq!(
from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(60 + 5).unwrap(),
from_hmsm(3, 4, 2, 0)
);
assert_eq!(
from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(2 * 60 * 60 + 6 * 60).unwrap(),
from_hmsm(0, 59, 7, 0)
);
assert_eq!(
from_hmsm(3, 5, 7, 0) - TimeDelta::try_milliseconds(80).unwrap(),
from_hmsm(3, 5, 6, 920)
);
assert_eq!(
from_hmsm(3, 5, 7, 950) - TimeDelta::try_milliseconds(280).unwrap(),
from_hmsm(3, 5, 7, 670)
);
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(8*60*60).unwrap(), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), from_hmsm(3, 5, 0, 300));
assert_eq!(leap - TimeDelta::try_days(1).unwrap(), from_hmsm(3, 6, 0, 300));
source§impl Sub for NaiveTime
impl Sub for NaiveTime
Subtracts another NaiveTime
from the current time.
Returns a TimeDelta
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around
NaiveTime::signed_duration_since
.
§Example
use chrono::{NaiveTime, TimeDelta};
let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap();
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero());
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875),
TimeDelta::try_milliseconds(25).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925),
TimeDelta::try_milliseconds(975).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900),
TimeDelta::try_seconds(7).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900),
TimeDelta::try_seconds(5 * 60).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900),
TimeDelta::try_seconds(3 * 3600).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900),
TimeDelta::try_seconds(-3600).unwrap()
);
assert_eq!(
from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap()
);
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::try_seconds(1).unwrap());
assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
TimeDelta::try_milliseconds(1500).unwrap());
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::try_seconds(60).unwrap());
assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::try_seconds(1).unwrap());
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
TimeDelta::try_seconds(61).unwrap());
source§impl SubAssign<Duration> for NaiveTime
impl SubAssign<Duration> for NaiveTime
Subtract-assign std::time::Duration
from NaiveTime
.
This wraps around and never overflows or underflows. In particular the subtraction ignores integral number of days.
source§fn sub_assign(&mut self, rhs: Duration)
fn sub_assign(&mut self, rhs: Duration)
-=
operation. Read moresource§impl SubAssign<TimeDelta> for NaiveTime
impl SubAssign<TimeDelta> for NaiveTime
Subtract-assign TimeDelta
from NaiveTime
.
This wraps around and never overflows or underflows. In particular the subtraction ignores integral number of days.
source§fn sub_assign(&mut self, rhs: TimeDelta)
fn sub_assign(&mut self, rhs: TimeDelta)
-=
operation. Read moresource§impl Timelike for NaiveTime
impl Timelike for NaiveTime
source§fn hour(&self) -> u32
fn hour(&self) -> u32
Returns the hour number from 0 to 23.
§Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0);
assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23);
source§fn minute(&self) -> u32
fn minute(&self) -> u32
Returns the minute number from 0 to 59.
§Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0);
assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56);
source§fn second(&self) -> u32
fn second(&self) -> u32
Returns the second number from 0 to 59.
§Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0);
assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4);
This method never returns 60 even when it is a leap second. (Why?) Use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
assert_eq!(leap.second(), 59);
assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
source§fn nanosecond(&self) -> u32
fn nanosecond(&self) -> u32
Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
§Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0);
assert_eq!(
NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(),
12_345_678
);
Leap seconds may have seemingly out-of-range return values.
You can reduce the range with time.nanosecond() % 1_000_000_000
, or
use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
assert_eq!(leap.nanosecond(), 1_000_000_000);
assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
source§fn with_hour(&self, hour: u32) -> Option<NaiveTime>
fn with_hour(&self, hour: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the hour number changed.
§Errors
Returns None
if the value for hour
is invalid.
§Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap()));
assert_eq!(dt.with_hour(24), None);
source§fn with_minute(&self, min: u32) -> Option<NaiveTime>
fn with_minute(&self, min: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the minute number changed.
§Errors
Returns None
if the value for minute
is invalid.
§Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!(
dt.with_minute(45),
Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap())
);
assert_eq!(dt.with_minute(60), None);
source§fn with_second(&self, sec: u32) -> Option<NaiveTime>
fn with_second(&self, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with the second number changed.
As with the second
method,
the input range is restricted to 0 through 59.
§Errors
Returns None
if the value for second
is invalid.
§Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!(
dt.with_second(17),
Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap())
);
assert_eq!(dt.with_second(60), None);
source§fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
with nanoseconds since the whole non-leap second changed.
As with the nanosecond
method,
the input range can exceed 1,000,000,000 for leap seconds.
§Errors
Returns None
if nanosecond >= 2,000,000,000
.
§Example
use chrono::{NaiveTime, Timelike};
let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
assert_eq!(
dt.with_nanosecond(333_333_333),
Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap())
);
assert_eq!(dt.with_nanosecond(2_000_000_000), None);
Leap seconds can theoretically follow any whole second. The following would be a proper leap second at the time zone offset of UTC-00:03:57 (there are several historical examples comparable to this “non-sense” offset), and therefore is allowed.
let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap();
assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333);
source§fn num_seconds_from_midnight(&self) -> u32
fn num_seconds_from_midnight(&self) -> u32
Returns the number of non-leap seconds past the last midnight.
§Example
use chrono::{NaiveTime, Timelike};
assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(), 3723);
assert_eq!(
NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(),
86164
);
assert_eq!(
NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(),
86399
);
impl Copy for NaiveTime
impl Eq for NaiveTime
impl StructuralPartialEq for NaiveTime
Auto Trait Implementations§
impl Freeze for NaiveTime
impl RefUnwindSafe for NaiveTime
impl Send for NaiveTime
impl Sync for NaiveTime
impl Unpin for NaiveTime
impl UnwindSafe for NaiveTime
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)