1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Transformations for relation expressions.
//!
//! This crate contains traits, types, and methods suitable for transforming
//! `MirRelationExpr` types in ways that preserve semantics and improve performance.
//! The core trait is `Transform`, and many implementors of this trait can be
//! boxed and iterated over. Some common transformation patterns are wrapped
//! as `Transform` implementors themselves.
//!
//! The crate also contains the beginnings of whole-dataflow optimization,
//! which uses the same analyses but spanning multiple dataflow elements.

#![warn(missing_docs)]
#![warn(missing_debug_implementations)]

use std::collections::HashMap;
use std::error::Error;
use std::fmt;

use expr::GlobalId;
use expr::MirRelationExpr;
use expr::MirScalarExpr;
use ore::id_gen::IdGen;

pub mod canonicalize_mfp;
pub mod column_knowledge;
pub mod cse;
pub mod demand;
pub mod fusion;
pub mod inline_let;
pub mod join_implementation;
pub mod map_lifting;
pub mod monotonic;
pub mod nonnull_requirements;
pub mod nonnullable;
pub mod predicate_pushdown;
pub mod projection_extraction;
pub mod projection_lifting;
pub mod projection_pushdown;
pub mod reduce_elision;
pub mod reduction;
pub mod reduction_pushdown;
pub mod redundant_join;
pub mod topk_elision;
pub mod union_cancel;
pub mod update_let;

pub mod dataflow;
pub use dataflow::optimize_dataflow;
use ore::stack::RecursionLimitError;

/// Arguments that get threaded through all transforms.
#[derive(Debug)]
pub struct TransformArgs<'a> {
    /// A shared instance of IdGen to allow constructing new Let expressions.
    pub id_gen: &'a mut IdGen,
    /// The indexes accessible.
    pub indexes: &'a HashMap<GlobalId, Vec<(GlobalId, Vec<MirScalarExpr>)>>,
}

/// Types capable of transforming relation expressions.
pub trait Transform: std::fmt::Debug {
    /// Transform a relation into a functionally equivalent relation.
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        args: TransformArgs,
    ) -> Result<(), TransformError>;
    /// A string describing the transform.
    ///
    /// This is useful mainly when iterating through many `Box<Tranform>`
    /// and one wants to judge progress before some defect occurs.
    fn debug(&self) -> String {
        format!("{:?}", self)
    }
}

/// Errors that can occur during a transformation.
#[derive(Debug, Clone)]
pub enum TransformError {
    /// An unstructured error.
    Internal(String),
}

impl fmt::Display for TransformError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            TransformError::Internal(msg) => write!(f, "internal transform error: {}", msg),
        }
    }
}

impl Error for TransformError {}

impl From<RecursionLimitError> for TransformError {
    fn from(error: RecursionLimitError) -> Self {
        TransformError::Internal(error.to_string())
    }
}

/// A sequence of transformations iterated some number of times.
#[derive(Debug)]
pub struct Fixpoint {
    transforms: Vec<Box<dyn crate::Transform>>,
    limit: usize,
}

impl Transform for Fixpoint {
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        args: TransformArgs,
    ) -> Result<(), TransformError> {
        // The number of iterations for a relation to settle depends on the
        // number of nodes in the relation. Instead of picking an arbitrary
        // hard limit on the number of iterations, we use a soft limit and
        // check whether the relation has become simpler after reaching it.
        // If so, we perform another pass of transforms. Otherwise, there is
        // a bug somewhere that prevents the relation from settling on a
        // stable shape.
        loop {
            let mut original_count = 0;
            relation.try_visit_post::<_, TransformError>(&mut |_| Ok(original_count += 1))?;
            for _ in 0..self.limit {
                let original = relation.clone();
                for transform in self.transforms.iter() {
                    transform.transform(
                        relation,
                        TransformArgs {
                            id_gen: args.id_gen,
                            indexes: args.indexes,
                        },
                    )?;
                }
                if *relation == original {
                    return Ok(());
                }
            }
            let mut final_count = 0;
            relation.try_visit_post::<_, TransformError>(&mut |_| Ok(final_count += 1))?;
            if final_count >= original_count {
                break;
            }
        }
        for transform in self.transforms.iter() {
            transform.transform(
                relation,
                TransformArgs {
                    id_gen: args.id_gen,
                    indexes: args.indexes,
                },
            )?;
        }
        Err(TransformError::Internal(format!(
            "fixpoint looped too many times {:#?}; transformed relation: {}",
            self,
            relation.pretty()
        )))
    }
}

/// A sequence of transformations that simplify the `MirRelationExpr`
#[derive(Debug)]
pub struct FuseAndCollapse {
    transforms: Vec<Box<dyn crate::Transform>>,
}

impl Default for FuseAndCollapse {
    fn default() -> Self {
        Self {
            // TODO: The relative orders of the transforms have not been
            // determined except where there are comments.
            // TODO (#6542): All the transforms here except for
            // `ProjectionLifting`, `InlineLet`, `UpdateLet`, and
            // `RedundantJoin` can be implemented as free functions. Note that
            // (#716) proposes the removal of `InlineLet` and `UpdateLet` as a
            // transforms.
            transforms: vec![
                Box::new(crate::projection_extraction::ProjectionExtraction),
                Box::new(crate::projection_lifting::ProjectionLifting::default()),
                Box::new(crate::fusion::map::Map),
                Box::new(crate::fusion::negate::Negate),
                Box::new(crate::fusion::filter::Filter),
                Box::new(crate::fusion::project::Project),
                Box::new(crate::fusion::join::Join),
                Box::new(crate::fusion::top_k::TopK),
                Box::new(crate::inline_let::InlineLet::new(false)),
                Box::new(crate::fusion::reduce::Reduce),
                Box::new(crate::fusion::union::Union),
                // This goes after union fusion so we can cancel out
                // more branches at a time.
                Box::new(crate::union_cancel::UnionBranchCancellation),
                // This should run before redundant join to ensure that key info
                // is correct.
                Box::new(crate::update_let::UpdateLet::default()),
                // Removes redundant inputs from joins.
                // Note that this eliminates one redundant input per join,
                // so it is necessary to run this section in a loop.
                // TODO: (#6748) Predicate pushdown unlocks the ability to
                // remove some redundant joins but also prevents other
                // redundant joins from being removed. When predicate pushdown
                // no longer works against redundant join, check if it is still
                // necessary to run RedundantJoin here.
                Box::new(crate::redundant_join::RedundantJoin::default()),
                // As a final logical action, convert any constant expression to a constant.
                // Some optimizations fight against this, and we want to be sure to end as a
                // `MirRelationExpr::Constant` if that is the case, so that subsequent use can
                // clearly see this.
                Box::new(crate::reduction::FoldConstants { limit: Some(10000) }),
            ],
        }
    }
}

impl Transform for FuseAndCollapse {
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        args: TransformArgs,
    ) -> Result<(), TransformError> {
        for transform in self.transforms.iter() {
            transform.transform(
                relation,
                TransformArgs {
                    id_gen: args.id_gen,
                    indexes: args.indexes,
                },
            )?;
        }
        Ok(())
    }
}

/// A naive optimizer for relation expressions.
///
/// The optimizer currently applies only peep-hole optimizations, from a limited
/// set that were sufficient to get some of TPC-H up and working. It is worth a
/// review at some point to improve the quality, coverage, and architecture of
/// the optimizations.
#[derive(Debug)]
pub struct Optimizer {
    /// The list of transforms to apply to an input relation.
    pub transforms: Vec<Box<dyn crate::Transform>>,
}

impl Optimizer {
    /// Builds a logical optimizer that only performs logical transformations.
    pub fn logical_optimizer() -> Self {
        let transforms: Vec<Box<dyn crate::Transform>> = vec![
            // 1. Structure-agnostic cleanup
            Box::new(crate::topk_elision::TopKElision),
            Box::new(crate::nonnull_requirements::NonNullRequirements::default()),
            // 2. Collapse constants, joins, unions, and lets as much as possible.
            // TODO: lift filters/maps to maximize ability to collapse
            // things down?
            Box::new(crate::Fixpoint {
                limit: 100,
                transforms: vec![Box::new(crate::FuseAndCollapse::default())],
            }),
            // 3. Move predicate information up and down the tree.
            //    This also fixes the shape of joins in the plan.
            Box::new(crate::Fixpoint {
                limit: 100,
                transforms: vec![
                    // Predicate pushdown sets the equivalence classes of joins.
                    Box::new(crate::predicate_pushdown::PredicatePushdown::default()),
                    // Lifts the information `!isnull(col)`
                    Box::new(crate::nonnullable::NonNullable),
                    // Lifts the information `col = literal`
                    // TODO (#6613): this also tries to lift `!isnull(col)` but
                    // less well than the previous transform. Eliminate
                    // redundancy between the two transforms.
                    Box::new(crate::column_knowledge::ColumnKnowledge::default()),
                    // Lifts the information `col1 = col2`
                    Box::new(crate::demand::Demand::default()),
                    Box::new(crate::FuseAndCollapse::default()),
                ],
            }),
            // 4. Reduce/Join simplifications.
            Box::new(crate::Fixpoint {
                limit: 100,
                transforms: vec![
                    // Pushes aggregations down
                    Box::new(crate::reduction_pushdown::ReductionPushdown),
                    // Replaces reduces with maps when the group keys are
                    // unique with maps
                    Box::new(crate::reduce_elision::ReduceElision),
                    // Converts `Cross Join {Constant(Literal) + Input}` to
                    // `Map {Cross Join (Input, Constant()), Literal}`.
                    // Join fusion will clean this up to `Map{Input, Literal}`
                    Box::new(crate::map_lifting::LiteralLifting::default()),
                    // Identifies common relation subexpressions.
                    // Must be followed by let inlining, to keep under control.
                    Box::new(crate::cse::relation_cse::RelationCSE),
                    Box::new(crate::inline_let::InlineLet::new(false)),
                    Box::new(crate::update_let::UpdateLet::default()),
                    Box::new(crate::FuseAndCollapse::default()),
                ],
            }),
        ];
        Self { transforms }
    }

    /// Builds a physical optimizer.
    ///
    /// Performs logical transformations followed by all physical ones.
    /// This is meant to be used for optimizing each view within a dataflow
    /// once view inlining has already happened, right before dataflow
    /// rendering.
    pub fn physical_optimizer() -> Self {
        // Implementation transformations
        let transforms: Vec<Box<dyn crate::Transform>> = vec![
            Box::new(crate::Fixpoint {
                limit: 100,
                transforms: vec![
                    Box::new(crate::join_implementation::JoinImplementation::default()),
                    Box::new(crate::column_knowledge::ColumnKnowledge::default()),
                    Box::new(crate::reduction::FoldConstants { limit: Some(10000) }),
                    Box::new(crate::demand::Demand::default()),
                    Box::new(crate::map_lifting::LiteralLifting::default()),
                ],
            }),
            Box::new(crate::canonicalize_mfp::CanonicalizeMfp),
            // Identifies common relation subexpressions.
            // Must be followed by let inlining, to keep under control.
            Box::new(crate::cse::relation_cse::RelationCSE),
            Box::new(crate::inline_let::InlineLet::new(false)),
            Box::new(crate::update_let::UpdateLet::default()),
            Box::new(crate::reduction::FoldConstants { limit: Some(10000) }),
        ];
        Self { transforms }
    }

    /// Contains the logical optimizations that should run after cross-view
    /// transformations run.
    pub fn logical_cleanup_pass() -> Self {
        let transforms: Vec<Box<dyn crate::Transform>> = vec![
            // Delete unnecessary maps.
            Box::new(crate::fusion::map::Map),
            Box::new(crate::Fixpoint {
                limit: 100,
                transforms: vec![
                    // Projection pushdown may unblock fusing joins and unions.
                    Box::new(crate::fusion::join::Join),
                    Box::new(crate::redundant_join::RedundantJoin::default()),
                    // Redundant join produces projects that need to be fused.
                    Box::new(crate::fusion::project::Project),
                    Box::new(crate::fusion::union::Union),
                    // This goes after union fusion so we can cancel out
                    // more branches at a time.
                    Box::new(crate::union_cancel::UnionBranchCancellation),
                    Box::new(crate::cse::relation_cse::RelationCSE),
                    Box::new(crate::inline_let::InlineLet::new(true)),
                    Box::new(crate::reduction::FoldConstants { limit: Some(10000) }),
                ],
            }),
        ];
        Self { transforms }
    }

    /// Optimizes the supplied relation expression.
    ///
    /// These optimizations are performed with no information about available arrangements,
    /// which makes them suitable for pre-optimization before dataflow deployment.
    pub fn optimize(
        &mut self,
        mut relation: MirRelationExpr,
    ) -> Result<expr::OptimizedMirRelationExpr, TransformError> {
        self.transform(&mut relation, &HashMap::new())?;
        Ok(expr::OptimizedMirRelationExpr(relation))
    }

    /// Optimizes the supplied relation expression in place, using available arrangements.
    ///
    /// This method should only be called with non-empty `indexes` when optimizing a dataflow,
    /// as the optimizations may lock in the use of arrangements that may cease to exist.
    fn transform(
        &self,
        relation: &mut MirRelationExpr,
        indexes: &HashMap<GlobalId, Vec<(GlobalId, Vec<MirScalarExpr>)>>,
    ) -> Result<(), TransformError> {
        let mut id_gen = Default::default();
        for transform in self.transforms.iter() {
            transform.transform(
                relation,
                TransformArgs {
                    id_gen: &mut id_gen,
                    indexes,
                },
            )?;
        }
        Ok(())
    }
}