1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//! A columnar container based on the columnation library.

use std::iter::FromIterator;

pub use columnation::*;

use crate::PushInto;

/// An append-only vector that store records as columns.
///
/// This container maintains elements that might conventionally own
/// memory allocations, but instead the pointers to those allocations
/// reference larger regions of memory shared with multiple instances
/// of the type. Elements can be retrieved as references, and care is
/// taken when this type is dropped to ensure that the correct memory
/// is returned (rather than the incorrect memory, from running the
/// elements `Drop` implementations).
pub struct TimelyStack<T: Columnation> {
    local: Vec<T>,
    inner: T::InnerRegion,
}

impl<T: Columnation> TimelyStack<T> {
    /// Construct a [TimelyStack], reserving space for `capacity` elements
    ///
    /// Note that the associated region is not initialized to a specific capacity
    /// because we can't generally know how much space would be required.
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            local: Vec::with_capacity(capacity),
            inner: T::InnerRegion::default(),
        }
    }

    /// Ensures `Self` can absorb `items` without further allocations.
    ///
    /// The argument `items` may be cloned and iterated multiple times.
    /// Please be careful if it contains side effects.
    #[inline(always)]
    pub fn reserve_items<'a, I>(&mut self, items: I)
        where
            I: Iterator<Item= &'a T>+Clone,
            T: 'a,
    {
        self.local.reserve(items.clone().count());
        self.inner.reserve_items(items);
    }

    /// Ensures `Self` can absorb `items` without further allocations.
    ///
    /// The argument `items` may be cloned and iterated multiple times.
    /// Please be careful if it contains side effects.
    #[inline(always)]
    pub fn reserve_regions<'a, I>(&mut self, regions: I)
        where
            Self: 'a,
            I: Iterator<Item= &'a Self>+Clone,
    {
        self.local.reserve(regions.clone().map(|cs| cs.local.len()).sum());
        self.inner.reserve_regions(regions.map(|cs| &cs.inner));
    }



    /// Copies an element in to the region.
    ///
    /// The element can be read by indexing
    pub fn copy(&mut self, item: &T) {
        // TODO: Some types `T` should just be cloned.
        // E.g. types that are `Copy` or vecs of ZSTs.
        unsafe {
            self.local.push(self.inner.copy(item));
        }
    }
    /// Empties the collection.
    pub fn clear(&mut self) {
        unsafe {
            // Unsafety justified in that setting the length to zero exposes
            // no invalid data.
            self.local.set_len(0);
            self.inner.clear();
        }
    }
    /// Retain elements that pass a predicate, from a specified offset.
    ///
    /// This method may or may not reclaim memory in the inner region.
    pub fn retain_from<P: FnMut(&T) -> bool>(&mut self, index: usize, mut predicate: P) {
        let mut write_position = index;
        for position in index..self.local.len() {
            if predicate(&self[position]) {
                // TODO: compact the inner region and update pointers.
                self.local.swap(position, write_position);
                write_position += 1;
            }
        }
        unsafe {
            // Unsafety justified in that `write_position` is no greater than
            // `self.local.len()` and so this exposes no invalid data.
            self.local.set_len(write_position);
        }
    }

    /// Unsafe access to `local` data. The slices stores data that is backed by a region
    /// allocation. Therefore, it is undefined behavior to mutate elements of the `local` slice.
    ///
    /// # Safety
    /// Elements within `local` can be reordered, but not mutated, removed and/or dropped.
    pub unsafe fn local(&mut self) -> &mut [T] {
        &mut self.local[..]
    }

    /// Estimate the memory capacity in bytes.
    #[inline]
    pub fn heap_size(&self, mut callback: impl FnMut(usize, usize)) {
        let size_of = std::mem::size_of::<T>();
        callback(self.local.len() * size_of, self.local.capacity() * size_of);
        self.inner.heap_size(callback);
    }

    /// Estimate the consumed memory capacity in bytes, summing both used and total capacity.
    #[inline]
    pub fn summed_heap_size(&self) -> (usize, usize) {
        let (mut length, mut capacity) = (0, 0);
        self.heap_size(|len, cap| {
            length += len;
            capacity += cap
        });
        (length, capacity)
    }

    /// The length in items.
    #[inline]
    pub fn len(&self) -> usize {
        self.local.len()
    }

    /// The capacity of the local vector.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.local.capacity()
    }

    /// Reserve space for `additional` elements.
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        self.local.reserve(additional)
    }
}

impl<A: Columnation, B: Columnation> TimelyStack<(A, B)> {
    /// Copies a destructured tuple `(A, B)` into this column stack.
    ///
    /// This serves situations where a tuple should be constructed from its constituents but not
    /// not all elements are available as owned data.
    ///
    /// The element can be read by indexing
    pub fn copy_destructured(&mut self, t1: &A, t2: &B) {
        unsafe {
            self.local.push(self.inner.copy_destructured(t1, t2));
        }
    }
}

impl<A: Columnation, B: Columnation, C: Columnation> TimelyStack<(A, B, C)> {
    /// Copies a destructured tuple `(A, B, C)` into this column stack.
    ///
    /// This serves situations where a tuple should be constructed from its constituents but not
    /// not all elements are available as owned data.
    ///
    /// The element can be read by indexing
    pub fn copy_destructured(&mut self, r0: &A, r1: &B, r2: &C) {
        unsafe {
            self.local.push(self.inner.copy_destructured(r0, r1, r2));
        }
    }
}

impl<T: Columnation> std::ops::Deref for TimelyStack<T> {
    type Target = [T];
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.local[..]
    }
}

impl<T: Columnation> Drop for TimelyStack<T> {
    fn drop(&mut self) {
        self.clear();
    }
}

impl<T: Columnation> Default for TimelyStack<T> {
    fn default() -> Self {
        Self {
            local: Vec::new(),
            inner: T::InnerRegion::default(),
        }
    }
}

impl<'a, A: 'a + Columnation> FromIterator<&'a A> for TimelyStack<A> {
    fn from_iter<T: IntoIterator<Item = &'a A>>(iter: T) -> Self {
        let iter = iter.into_iter();
        let mut c = TimelyStack::<A>::with_capacity(iter.size_hint().0);
        for element in iter {
            c.copy(element);
        }

        c
    }
}

impl<T: Columnation + PartialEq> PartialEq for TimelyStack<T> {
    fn eq(&self, other: &Self) -> bool {
        PartialEq::eq(&self[..], &other[..])
    }
}

impl<T: Columnation + Eq> Eq for TimelyStack<T> {}

impl<T: Columnation + std::fmt::Debug> std::fmt::Debug for TimelyStack<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self[..].fmt(f)
    }
}

impl<T: Columnation> Clone for TimelyStack<T> {
    fn clone(&self) -> Self {
        let mut new: Self = Default::default();
        for item in &self[..] {
            new.copy(item);
        }
        new
    }

    fn clone_from(&mut self, source: &Self) {
        self.clear();
        for item in &source[..] {
            self.copy(item);
        }
    }
}

impl<T: Columnation> PushInto<T> for TimelyStack<T> {
    #[inline]
    fn push_into(&mut self, item: T) {
        self.copy(&item);
    }
}

impl<T: Columnation> PushInto<&T> for TimelyStack<T> {
    #[inline]
    fn push_into(&mut self, item: &T) {
        self.copy(item);
    }
}


impl<T: Columnation> PushInto<&&T> for TimelyStack<T> {
    #[inline]
    fn push_into(&mut self, item: &&T) {
        self.copy(*item);
    }
}

mod serde {
    use serde::{Deserialize, Deserializer, Serialize, Serializer};

    use crate::columnation::{Columnation, TimelyStack};

    impl<T: Columnation + Serialize> Serialize for TimelyStack<T> {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            use serde::ser::SerializeSeq;
            let mut seq = serializer.serialize_seq(Some(self.local.len()))?;
            for element in &self[..] {
                seq.serialize_element(element)?;
            }
            seq.end()
        }
    }

    impl<'a, T: Columnation + Deserialize<'a>> Deserialize<'a> for TimelyStack<T> {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'a>,
        {
            use serde::de::{SeqAccess, Visitor};
            use std::fmt;
            use std::marker::PhantomData;
            struct TimelyStackVisitor<T> {
                marker: PhantomData<T>,
            }

            impl<'de, T: Columnation> Visitor<'de> for TimelyStackVisitor<T>
            where
                T: Deserialize<'de>,
            {
                type Value = TimelyStack<T>;

                fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                    formatter.write_str("a sequence")
                }

                fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
                where
                    A: SeqAccess<'de>,
                {
                    let local = Vec::with_capacity(
                        seq.size_hint()
                            .unwrap_or(crate::buffer::default_capacity::<T>()),
                    );
                    let mut stack = TimelyStack {
                        local,
                        inner: T::InnerRegion::default(),
                    };

                    while let Some(value) = seq.next_element()? {
                        stack.copy(&value);
                    }

                    Ok(stack)
                }
            }

            let visitor = TimelyStackVisitor {
                marker: PhantomData,
            };
            deserializer.deserialize_seq(visitor)
        }
    }
}

mod container {
    use std::ops::Deref;
    use crate::{Container, SizableContainer};

    use crate::columnation::{Columnation, TimelyStack};

    impl<T: Columnation> Container for TimelyStack<T> {
        type ItemRef<'a> = &'a T where Self: 'a;
        type Item<'a> = &'a T where Self: 'a;

        fn len(&self) -> usize {
            self.local.len()
        }

        fn is_empty(&self) -> bool {
            self.local.is_empty()
        }

        fn clear(&mut self) {
            TimelyStack::clear(self)
        }

        type Iter<'a> = std::slice::Iter<'a, T> where Self: 'a;

        fn iter(&self) -> Self::Iter<'_> {
            self.deref().iter()
        }

        type DrainIter<'a> = std::slice::Iter<'a, T> where Self: 'a;

        fn drain(&mut self) -> Self::DrainIter<'_> {
            (*self).iter()
        }
    }

    impl<T: Columnation> SizableContainer for TimelyStack<T> {
        fn at_capacity(&self) -> bool {
            self.len() == self.capacity()
        }
        fn ensure_capacity(&mut self, stash: &mut Option<Self>) {
            if self.capacity() == 0 {
                *self = stash.take().unwrap_or_default();
                self.clear();
            }
            let preferred = crate::buffer::default_capacity::<T>();
            if self.capacity() < preferred {
                self.reserve(preferred - self.capacity());
            }
        }
    }
}

mod flatcontainer {
    //! A bare-bones flatcontainer region implementation for [`TimelyStack`].

    use columnation::Columnation;
    use flatcontainer::{Push, Region, ReserveItems};
    use crate::columnation::TimelyStack;

    #[derive(Debug, Clone)]
    struct ColumnationRegion<T: Columnation> {
        inner: TimelyStack<T>,
    }

    impl<T: Columnation> Default for ColumnationRegion<T> {
        fn default() -> Self {
            Self { inner: Default::default() }
        }
    }

    impl<T: Columnation + Clone> Region for ColumnationRegion<T> {
        type Owned = T;
        type ReadItem<'a> = &'a T where Self: 'a;
        type Index = usize;

        fn merge_regions<'a>(regions: impl Iterator<Item=&'a Self> + Clone) -> Self where Self: 'a {
            let mut inner = TimelyStack::default();
            inner.reserve_regions(regions.map(|r| &r.inner));
            Self { inner}
        }

        fn index(&self, index: Self::Index) -> Self::ReadItem<'_> {
            &self.inner[index]
        }

        fn reserve_regions<'a, I>(&mut self, regions: I) where Self: 'a, I: Iterator<Item=&'a Self> + Clone {
            self.inner.reserve_regions(regions.map(|r| &r.inner));
        }

        fn clear(&mut self) {
            self.inner.clear();
        }

        fn heap_size<F: FnMut(usize, usize)>(&self, callback: F) {
            self.inner.heap_size(callback);
        }

        fn reborrow<'b, 'a: 'b>(item: Self::ReadItem<'a>) -> Self::ReadItem<'b> where Self: 'a {
            item
        }
    }

    impl<T: Columnation + Clone> Push<T> for ColumnationRegion<T> {
        fn push(&mut self, item: T) -> Self::Index {
            self.inner.copy(&item);
            self.inner.len() - 1
        }
    }

    impl<T: Columnation + Clone> Push<&T> for ColumnationRegion<T> {
        fn push(&mut self, item: &T) -> Self::Index {
            self.inner.copy(item);
            self.inner.len() - 1
        }
    }

    impl<T: Columnation + Clone> Push<&&T> for ColumnationRegion<T> {
        fn push(&mut self, item: &&T) -> Self::Index {
            self.inner.copy(*item);
            self.inner.len() - 1
        }
    }

    impl<'a, T: Columnation + Clone + 'a> ReserveItems<&'a T> for ColumnationRegion<T> {
        fn reserve_items<I>(&mut self, items: I) where I: Iterator<Item=&'a T> + Clone {
            self.inner.reserve_items(items);
        }
    }
}