1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//! Extension traits to move a `Stream` between an outer `Scope` and inner `Scope`.
//!
//! Each `Stream` indicates its containing `Scope` as part of its type signature. To create a new
//! stream with the same contents in another scope, one must explicit use the methods `enter` and
//! `leave`, to clearly indicate the transition to the timely dataflow progress tracking logic.
//!
//! # Examples
//! ```
//! use timely::dataflow::scopes::Scope;
//! use timely::dataflow::operators::{Enter, Leave, ToStream, Inspect};
//!
//! timely::example(|outer| {
//!     let stream = (0..9).to_stream(outer);
//!     let output = outer.region(|inner| {
//!         stream.enter(inner)
//!               .inspect(|x| println!("in nested scope: {:?}", x))
//!               .leave()
//!     });
//! });
//! ```

use std::marker::PhantomData;

use crate::logging::{TimelyLogger, MessagesEvent};
use crate::progress::Timestamp;
use crate::progress::timestamp::Refines;
use crate::progress::{Source, Target};
use crate::order::Product;
use crate::{Container, Data};
use crate::communication::Push;
use crate::dataflow::channels::pushers::{CounterCore, TeeCore};
use crate::dataflow::channels::{BundleCore, Message};

use crate::worker::AsWorker;
use crate::dataflow::{StreamCore, Scope, Stream};
use crate::dataflow::scopes::{Child, ScopeParent};
use crate::dataflow::operators::delay::Delay;

/// Extension trait to move a `Stream` into a child of its current `Scope`.
pub trait Enter<G: Scope, T: Timestamp+Refines<G::Timestamp>, C: Container> {
    /// Moves the `Stream` argument into a child of its current `Scope`.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::scopes::Scope;
    /// use timely::dataflow::operators::{Enter, Leave, ToStream};
    ///
    /// timely::example(|outer| {
    ///     let stream = (0..9).to_stream(outer);
    ///     let output = outer.region(|inner| {
    ///         stream.enter(inner).leave()
    ///     });
    /// });
    /// ```
    fn enter<'a>(&self, _: &Child<'a, G, T>) -> StreamCore<Child<'a, G, T>, C>;
}

use crate::dataflow::scopes::child::Iterative;

/// Extension trait to move a `Stream` into a child of its current `Scope` setting the timestamp for each element.
pub trait EnterAt<G: Scope, T: Timestamp, D: Data> {
    /// Moves the `Stream` argument into a child of its current `Scope` setting the timestamp for each element by `initial`.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::scopes::Scope;
    /// use timely::dataflow::operators::{EnterAt, Leave, ToStream};
    ///
    /// timely::example(|outer| {
    ///     let stream = (0..9u64).to_stream(outer);
    ///     let output = outer.iterative(|inner| {
    ///         stream.enter_at(inner, |x| *x).leave()
    ///     });
    /// });
    /// ```
    fn enter_at<'a, F:FnMut(&D)->T+'static>(&self, scope: &Iterative<'a, G, T>, initial: F) -> Stream<Iterative<'a, G, T>, D> ;
}

impl<G: Scope, T: Timestamp, D: Data, E: Enter<G, Product<<G as ScopeParent>::Timestamp, T>, Vec<D>>> EnterAt<G, T, D> for E {
    fn enter_at<'a, F:FnMut(&D)->T+'static>(&self, scope: &Iterative<'a, G, T>, mut initial: F) ->
        Stream<Iterative<'a, G, T>, D> {
            self.enter(scope).delay(move |datum, time| Product::new(time.clone().to_outer(), initial(datum)))
    }
}

impl<G: Scope, T: Timestamp+Refines<G::Timestamp>, C: Data+Container> Enter<G, T, C> for StreamCore<G, C> {
    fn enter<'a>(&self, scope: &Child<'a, G, T>) -> StreamCore<Child<'a, G, T>, C> {

        use crate::scheduling::Scheduler;

        let (targets, registrar) = TeeCore::<T, C>::new();
        let ingress = IngressNub {
            targets: CounterCore::new(targets),
            phantom: PhantomData,
            activator: scope.activator_for(&scope.addr()),
            active: false,
        };
        let produced = ingress.targets.produced().clone();
        let input = scope.subgraph.borrow_mut().new_input(produced);
        let channel_id = scope.clone().new_identifier();

        if let Some(logger) = scope.logging() {
            let pusher = LogPusher::new(ingress, channel_id, scope.index(), logger);
            self.connect_to(input, pusher, channel_id);
        } else {
            self.connect_to(input, ingress, channel_id);
        }

        StreamCore::new(
            Source::new(0, input.port),
            registrar,
            scope.clone(),
        )
    }
}

/// Extension trait to move a `Stream` to the parent of its current `Scope`.
pub trait Leave<G: Scope, D: Container> {
    /// Moves a `Stream` to the parent of its current `Scope`.
    ///
    /// # Examples
    /// ```
    /// use timely::dataflow::scopes::Scope;
    /// use timely::dataflow::operators::{Enter, Leave, ToStream};
    ///
    /// timely::example(|outer| {
    ///     let stream = (0..9).to_stream(outer);
    ///     let output = outer.region(|inner| {
    ///         stream.enter(inner).leave()
    ///     });
    /// });
    /// ```
    fn leave(&self) -> StreamCore<G, D>;
}

impl<'a, G: Scope, D: Clone+Container, T: Timestamp+Refines<G::Timestamp>> Leave<G, D> for StreamCore<Child<'a, G, T>, D> {
    fn leave(&self) -> StreamCore<G, D> {

        let scope = self.scope();

        let output = scope.subgraph.borrow_mut().new_output();
        let target = Target::new(0, output.port);
        let (targets, registrar) = TeeCore::<G::Timestamp, D>::new();
        let egress = EgressNub { targets, phantom: PhantomData };
        let channel_id = scope.clone().new_identifier();

        if let Some(logger) = scope.logging() {
            let pusher = LogPusher::new(egress, channel_id, scope.index(), logger);
            self.connect_to(target, pusher, channel_id);
        } else {
            self.connect_to(target, egress, channel_id);
        }

        StreamCore::new(
            output,
            registrar,
            scope.parent,
        )
    }
}


struct IngressNub<TOuter: Timestamp, TInner: Timestamp+Refines<TOuter>, TData: Container> {
    targets: CounterCore<TInner, TData, TeeCore<TInner, TData>>,
    phantom: ::std::marker::PhantomData<TOuter>,
    activator: crate::scheduling::Activator,
    active: bool,
}

impl<TOuter: Timestamp, TInner: Timestamp+Refines<TOuter>, TData: Container> Push<BundleCore<TOuter, TData>> for IngressNub<TOuter, TInner, TData> {
    fn push(&mut self, element: &mut Option<BundleCore<TOuter, TData>>) {
        if let Some(message) = element {
            let outer_message = message.as_mut();
            let data = ::std::mem::take(&mut outer_message.data);
            let mut inner_message = Some(BundleCore::from_typed(Message::new(TInner::to_inner(outer_message.time.clone()), data, 0, 0)));
            self.targets.push(&mut inner_message);
            if let Some(inner_message) = inner_message {
                if let Some(inner_message) = inner_message.if_typed() {
                    outer_message.data = inner_message.data;
                }
            }
            self.active = true;
        }
        else {
            if self.active {
                self.activator.activate();
                self.active = false;
            }
            self.targets.done();
        }
    }
}


struct EgressNub<TOuter: Timestamp, TInner: Timestamp+Refines<TOuter>, TData: Data> {
    targets: TeeCore<TOuter, TData>,
    phantom: PhantomData<TInner>,
}

impl<TOuter, TInner, TData: Container> Push<BundleCore<TInner, TData>> for EgressNub<TOuter, TInner, TData>
where TOuter: Timestamp, TInner: Timestamp+Refines<TOuter>, TData: Data {
    fn push(&mut self, message: &mut Option<BundleCore<TInner, TData>>) {
        if let Some(message) = message {
            let inner_message = message.as_mut();
            let data = ::std::mem::take(&mut inner_message.data);
            let mut outer_message = Some(BundleCore::from_typed(Message::new(inner_message.time.clone().to_outer(), data, 0, 0)));
            self.targets.push(&mut outer_message);
            if let Some(outer_message) = outer_message {
                if let Some(outer_message) = outer_message.if_typed() {
                    inner_message.data = outer_message.data;
                }
            }
        }
        else { self.targets.done(); }
    }
}

/// A pusher that logs messages passing through it.
///
/// This type performs the same function as the `LogPusher` and `LogPuller` types in
/// `timely::dataflow::channels::pact`. We need a special implementation for `enter`/`leave`
/// channels because those don't have a puller connected. Thus, this pusher needs to log both the
/// send and the receive `MessageEvent`.
struct LogPusher<P> {
    pusher: P,
    channel: usize,
    counter: usize,
    index: usize,
    logger: TimelyLogger,
}

impl<P> LogPusher<P> {
    fn new(pusher: P, channel: usize, index: usize, logger: TimelyLogger) -> Self {
        Self {
            pusher,
            channel,
            counter: 0,
            index,
            logger,
        }
    }
}

impl<T, D, P> Push<BundleCore<T, D>> for LogPusher<P>
where
    D: Container,
    P: Push<BundleCore<T, D>>,
{
    fn push(&mut self, element: &mut Option<BundleCore<T, D>>) {
        if let Some(bundle) = element {
            let send_event = MessagesEvent {
                is_send: true,
                channel: self.channel,
                source: self.index,
                target: self.index,
                seq_no: self.counter,
                length: bundle.data.len(),
            };
            let recv_event = MessagesEvent {
                is_send: false,
                ..send_event
            };

            self.logger.log(send_event);
            self.logger.log(recv_event);
            self.counter += 1;
        }

        self.pusher.push(element);
    }
}

#[cfg(test)]
mod test {
    /// Test that nested scopes with pass-through edges (no operators) correctly communicate progress.
    ///
    /// This is for issue: https://github.com/TimelyDataflow/timely-dataflow/issues/377
    #[test]
    fn test_nested() {

        use crate::dataflow::{InputHandle, ProbeHandle};
        use crate::dataflow::operators::{Input, Inspect, Probe};

        use crate::dataflow::Scope;
        use crate::dataflow::operators::{Enter, Leave};

        // initializes and runs a timely dataflow.
        crate::execute(crate::Config::process(3), |worker| {

            let index = worker.index();
            let mut input = InputHandle::new();
            let mut probe = ProbeHandle::new();

            // create a new input, exchange data, and inspect its output
            worker.dataflow(|scope| {
                let data = scope.input_from(&mut input);

                scope.region(|inner| {

                    let data = data.enter(inner);
                    inner.region(|inner2| data.enter(inner2).leave()).leave()
                })
                    .inspect(move |x| println!("worker {}:\thello {}", index, x))
                    .probe_with(&mut probe);
            });

            // introduce data and watch!
            input.advance_to(0);
            for round in 0..10 {
                if index == 0 {
                    input.send(round);
                }
                input.advance_to(round + 1);
                while probe.less_than(input.time()) {
                    worker.step_or_park(None);
                }
            }
        }).unwrap();
    }

}