1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

use std::fmt;
use std::iter;
use std::vec;

use anyhow::bail;
use serde::{Deserialize, Serialize};

use lowertest::MzReflect;
use ore::str::StrExt;

use crate::{Datum, ScalarType};

/// The type of a [`Datum`](crate::Datum).
///
/// [`ColumnType`] bundles information about the scalar type of a datum (e.g.,
/// Int32 or String) with its nullability.
///
/// To construct a column type, either initialize the struct directly, or
/// use the [`ScalarType::nullable`] method.
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect)]
pub struct ColumnType {
    /// The underlying scalar type (e.g., Int32 or String) of this column.
    pub scalar_type: ScalarType,
    /// Whether this datum can be null.
    #[serde(default = "return_true")]
    pub nullable: bool,
}

/// This method exists solely for the purpose of making ColumnType nullable by
/// default in unit tests. The default value of a bool is false, and the only
/// way to make an object take on any other value by default is to pass it a
/// function that returns the desired default value. See
/// <https://github.com/serde-rs/serde/issues/1030>
#[inline(always)]
fn return_true() -> bool {
    true
}

impl ColumnType {
    pub fn union(&self, other: &Self) -> Result<Self, anyhow::Error> {
        match (self.scalar_type.clone(), other.scalar_type.clone()) {
            (scalar_type, other_scalar_type) if scalar_type.base_eq(&other_scalar_type) => {
                Ok(ColumnType {
                    scalar_type,
                    nullable: self.nullable || other.nullable,
                })
            }
            (
                ScalarType::Record {
                    fields,
                    custom_oid,
                    custom_name,
                },
                ScalarType::Record {
                    fields: other_fields,
                    custom_oid: other_custom_oid,
                    custom_name: other_custom_name,
                },
            ) => {
                if custom_oid != other_custom_oid || custom_name != other_custom_name {
                    bail!(
                        "Can't union types: {:?} and {:?}",
                        self.scalar_type,
                        other.scalar_type
                    );
                };

                let mut union_fields: Vec<(ColumnName, ColumnType)> = vec![];
                for (field, other_field) in fields.iter().zip(other_fields.iter()) {
                    if field.0 != other_field.0 {
                        bail!(
                            "Can't union types: {:?} and {:?}",
                            self.scalar_type,
                            other.scalar_type
                        );
                    } else {
                        let union_column_type = field.1.union(&other_field.1)?;
                        union_fields.push((field.0.clone(), union_column_type));
                    };
                }

                Ok(ColumnType {
                    scalar_type: ScalarType::Record {
                        fields: union_fields,
                        custom_oid,
                        custom_name,
                    },
                    nullable: self.nullable || other.nullable,
                })
            }
            _ => bail!(
                "Can't union types: {:?} and {:?}",
                self.scalar_type,
                other.scalar_type
            ),
        }
    }

    /// Consumes this `ColumnType` and returns a new `ColumnType` with its
    /// nullability set to the specified boolean.
    pub fn nullable(mut self, nullable: bool) -> Self {
        self.nullable = nullable;
        self
    }
}

/// The type of a relation.
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize, Hash, MzReflect)]
pub struct RelationType {
    /// The type for each column, in order.
    pub column_types: Vec<ColumnType>,
    /// Sets of indices that are "keys" for the collection.
    ///
    /// Each element in this list is a set of column indices, each with the
    /// property that the collection contains at most one record with each
    /// distinct set of values for each column. Alternately, for a specific set
    /// of values assigned to the these columns there is at most one record.
    ///
    /// A collection can contain multiple sets of keys, although it is common to
    /// have either zero or one sets of key indices.
    #[serde(default)]
    pub keys: Vec<Vec<usize>>,
}

impl RelationType {
    /// Constructs a `RelationType` representing the relation with no columns and
    /// no keys.
    pub fn empty() -> Self {
        RelationType::new(vec![])
    }

    /// Constructs a new `RelationType` from specified column types.
    ///
    /// The `RelationType` will have no keys.
    pub fn new(column_types: Vec<ColumnType>) -> Self {
        RelationType {
            column_types,
            keys: Vec::new(),
        }
    }

    /// Adds a new key for the relation.
    pub fn with_key(mut self, mut indices: Vec<usize>) -> Self {
        indices.sort_unstable();
        if !self.keys.contains(&indices) {
            self.keys.push(indices);
        }
        self
    }

    pub fn with_keys(mut self, keys: Vec<Vec<usize>>) -> Self {
        for key in keys {
            self = self.with_key(key)
        }
        self
    }

    /// Computes the number of columns in the relation.
    pub fn arity(&self) -> usize {
        self.column_types.len()
    }

    /// Gets the index of the columns used when creating a default index.
    pub fn default_key(&self) -> Vec<usize> {
        if let Some(key) = self.keys.first() {
            if key.is_empty() {
                (0..self.column_types.len()).collect()
            } else {
                key.clone()
            }
        } else {
            (0..self.column_types.len()).collect()
        }
    }
}

/// The name of a column in a [`RelationDesc`].
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash, MzReflect)]
pub struct ColumnName(String);

impl ColumnName {
    /// Returns this column name as a `str`.
    pub fn as_str(&self) -> &str {
        &self.0
    }

    /// Returns a mutable reference to the string underlying this column name.
    pub fn as_mut_str(&mut self) -> &mut String {
        &mut self.0
    }
}

impl fmt::Display for ColumnName {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.0)
    }
}

impl From<String> for ColumnName {
    fn from(s: String) -> ColumnName {
        ColumnName(s)
    }
}

impl From<&str> for ColumnName {
    fn from(s: &str) -> ColumnName {
        ColumnName(s.into())
    }
}

impl From<&ColumnName> for ColumnName {
    fn from(n: &ColumnName) -> ColumnName {
        n.clone()
    }
}

/// A description of the shape of a relation.
///
/// It bundles a [`RelationType`] with the name of each column in the relation.
/// Individual column names are optional.
///
/// # Examples
///
/// A `RelationDesc`s is typically constructed via its builder API:
///
/// ```
/// use repr::{ColumnType, RelationDesc, ScalarType};
///
/// let desc = RelationDesc::empty()
///     .with_column("id", ScalarType::Int64.nullable(false))
///     .with_column("price", ScalarType::Float64.nullable(true));
/// ```
///
/// In more complicated cases, like when constructing a `RelationDesc` in
/// response to user input, it may be more convenient to construct a relation
/// type first, and imbue it with column names to form a `RelationDesc` later:
///
/// ```
/// use repr::RelationDesc;
///
/// # fn plan_query(_: &str) -> repr::RelationType { repr::RelationType::new(vec![]) }
/// let relation_type = plan_query("SELECT * FROM table");
/// let names = (0..relation_type.arity()).map(|i| match i {
///     0 => "first",
///     1 => "second",
///     _ => "unknown",
/// });
/// let desc = RelationDesc::new(relation_type, names);
/// ```
#[derive(Clone, Debug, Eq, PartialEq, Serialize, Deserialize, Hash)]
pub struct RelationDesc {
    typ: RelationType,
    names: Vec<ColumnName>,
}

impl RelationDesc {
    /// Constructs a new `RelationDesc` that represents the empty relation
    /// with no columns and no keys.
    pub fn empty() -> Self {
        RelationDesc {
            typ: RelationType::empty(),
            names: vec![],
        }
    }

    /// Constructs a new `RelationDesc` from a `RelationType` and an iterator
    /// over column names.
    ///
    /// # Panics
    ///
    /// Panics if the arity of the `RelationType` is not equal to the number of
    /// items in `names`.
    pub fn new<I, N>(typ: RelationType, names: I) -> Self
    where
        I: IntoIterator<Item = N>,
        N: Into<ColumnName>,
    {
        let names: Vec<_> = names.into_iter().map(|name| name.into()).collect();
        assert_eq!(typ.column_types.len(), names.len());
        RelationDesc { typ, names }
    }

    pub fn from_names_and_types<I, T, N>(iter: I) -> Self
    where
        I: IntoIterator<Item = (N, T)>,
        T: Into<ColumnType>,
        N: Into<ColumnName>,
    {
        let (names, types): (Vec<_>, Vec<_>) = iter.into_iter().unzip();
        let types = types.into_iter().map(Into::into).collect();
        let typ = RelationType::new(types);
        Self::new(typ, names)
    }
    /// Concatenates a `RelationDesc` onto the end of this `RelationDesc`.
    pub fn concat(mut self, other: Self) -> Self {
        let self_len = self.typ.column_types.len();
        self.names.extend(other.names);
        self.typ.column_types.extend(other.typ.column_types);
        for k in other.typ.keys {
            let k = k.into_iter().map(|idx| idx + self_len).collect();
            self = self.with_key(k);
        }
        self
    }

    /// Appends a column with the specified name and type.
    pub fn with_column<N>(mut self, name: N, column_type: ColumnType) -> Self
    where
        N: Into<ColumnName>,
    {
        self.typ.column_types.push(column_type);
        self.names.push(name.into());
        self
    }

    /// Adds a new key for the relation.
    pub fn with_key(mut self, indices: Vec<usize>) -> Self {
        self.typ = self.typ.with_key(indices);
        self
    }

    /// Drops all existing keys.
    pub fn without_keys(mut self) -> Self {
        self.typ.keys.clear();
        self
    }

    /// Builds a new relation description with the column names replaced with
    /// new names.
    ///
    /// # Panics
    ///
    /// Panics if the arity of the relation type does not match the number of
    /// items in `names`.
    pub fn with_names<I, N>(self, names: I) -> Self
    where
        I: IntoIterator<Item = N>,
        N: Into<ColumnName>,
    {
        Self::new(self.typ, names)
    }

    /// Computes the number of columns in the relation.
    pub fn arity(&self) -> usize {
        self.typ.arity()
    }

    /// Returns the relation type underlying this relation description.
    pub fn typ(&self) -> &RelationType {
        &self.typ
    }

    /// Returns an iterator over the columns in this relation.
    pub fn iter(&self) -> impl Iterator<Item = (&ColumnName, &ColumnType)> {
        self.iter_names().zip(self.iter_types())
    }

    /// Returns an iterator over the types of the columns in this relation.
    pub fn iter_types(&self) -> impl Iterator<Item = &ColumnType> {
        self.typ.column_types.iter()
    }

    /// Returns an iterator over the names of the columns in this relation.
    pub fn iter_names(&self) -> impl Iterator<Item = &ColumnName> {
        self.names.iter()
    }

    /// Finds a column by name.
    ///
    /// Returns the index and type of the column named `name`. If no column with
    /// the specified name exists, returns `None`. If multiple columns have the
    /// specified name, the leftmost column is returned.
    pub fn get_by_name(&self, name: &ColumnName) -> Option<(usize, &ColumnType)> {
        self.iter_names()
            .position(|n| n == name)
            .map(|i| (i, &self.typ.column_types[i]))
    }

    /// Gets the name of the `i`th column.
    ///
    /// # Panics
    ///
    /// Panics if `i` is not a valid column index.
    pub fn get_name(&self, i: usize) -> &ColumnName {
        &self.names[i]
    }

    /// Gets the name of the `i`th column if that column name is unambiguous.
    ///
    /// If at least one other column has the same name as the `i`th column,
    /// returns `None`. If the `i`th column has no name, returns `None`.
    ///
    /// # Panics
    ///
    /// Panics if `i` is not a valid column index.
    pub fn get_unambiguous_name(&self, i: usize) -> Option<&ColumnName> {
        let name = &self.names[i];
        if self.iter_names().filter(|n| *n == name).count() == 1 {
            Some(name)
        } else {
            None
        }
    }

    /// Verifies that `d` meets all of the constraints for the `i`th column of `self`.
    ///
    /// n.b. The only constraint MZ currently supports in NOT NULL, but this
    /// structure will  be simple to extend.
    pub fn constraints_met(&self, i: usize, d: &Datum) -> Result<(), NotNullViolation> {
        let name = &self.names[i];
        let typ = &self.typ.column_types[i];
        if d == &Datum::Null && !typ.nullable {
            Err(NotNullViolation(name.clone()))
        } else {
            Ok(())
        }
    }
}

impl IntoIterator for RelationDesc {
    type Item = (ColumnName, ColumnType);
    type IntoIter = iter::Zip<vec::IntoIter<ColumnName>, vec::IntoIter<ColumnType>>;

    fn into_iter(self) -> Self::IntoIter {
        self.names.into_iter().zip(self.typ.column_types)
    }
}

/// Expression violated not-null constraint on named column
#[derive(Debug, PartialEq, Eq)]
pub struct NotNullViolation(pub ColumnName);

impl fmt::Display for NotNullViolation {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "null value in column {} violates not-null constraint",
            self.0.as_str().quoted()
        )
    }
}