1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE file at the
// root of this repository, or online at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Graph utilities.
use std::collections::HashSet;
/// A non-recursive implementation of a fallible depth-first traversal
/// starting from `root`.
///
/// Assumes that nodes in the graph all have unique node ids.
///
/// `at_enter` runs when entering a node. It is expected to return an in-order
/// list of the children of the node. You can omit children from the list
/// returned if you want to skip traversing the subgraphs corresponding to
/// those children. If no children are omitted, `at_enter` can be thought
/// of as a function that processes the nodes of the graph in pre-order.
///
/// `at_exit` runs when exiting a node. It can be thought of as a function that
/// processes the nodes of the graph in post-order.
///
/// This function only enters and exits a node at most once and thus is safe to
/// run even if the graph contains a cycle.
pub fn try_nonrecursive_dft<Graph, NodeId, AtEnter, AtExit, E>(
graph: &Graph,
root: NodeId,
at_enter: &mut AtEnter,
at_exit: &mut AtExit,
) -> Result<(), E>
where
NodeId: std::cmp::Eq + std::hash::Hash,
AtEnter: FnMut(&Graph, &NodeId) -> Result<Vec<NodeId>, E>,
AtExit: FnMut(&Graph, &NodeId) -> Result<(), E>,
{
// All nodes that have been entered but not exited. Last node in the vec is
// the node that we most recently entered.
let mut entered = Vec::new();
// All nodes that have been exited.
let mut exited = HashSet::new();
// Pseudocode for the recursive version of this function would look like:
// ```
// children = at_enter(graph, node)
// foreach child in children:
// recursive_call(graph, child)
// atexit(graph, node)
// ```
// In this non-recursive implementation, you can think of the call stack as
// been replaced by `entered`. Every time an object is pushed into `entered`
// would have been a time you would have pushed a recursive call onto the
// call stack. Likewise, times an object is popped from `entered` would have
// been times when recursive calls leave the stack.
// Enter from the root.
let children = at_enter(graph, &root)?;
entered_node(&mut entered, root, children);
while !entered.is_empty() {
if let Some(to_enter) = find_next_child_to_enter(&mut entered, &mut exited) {
let children = at_enter(graph, &to_enter)?;
entered_node(&mut entered, to_enter, children);
} else {
// If this node has no more children to descend into,
// exit the current node and run `at_exit`.
let (to_exit, _) = entered.pop().unwrap();
at_exit(graph, &to_exit)?;
exited.insert(to_exit);
}
}
Ok(())
}
/// Same as [`try_nonrecursive_dft`], but allows changes to be made to the graph.
pub fn try_nonrecursive_dft_mut<Graph, NodeId, AtEnter, AtExit, E>(
graph: &mut Graph,
root: NodeId,
at_enter: &mut AtEnter,
at_exit: &mut AtExit,
) -> Result<(), E>
where
NodeId: std::cmp::Eq + std::hash::Hash + Clone,
AtEnter: FnMut(&mut Graph, &NodeId) -> Result<Vec<NodeId>, E>,
AtExit: FnMut(&mut Graph, &NodeId) -> Result<(), E>,
{
// Code in this method is identical to the code in `nonrecursive_dft`.
let mut entered = Vec::new();
let mut exited = HashSet::new();
let children = at_enter(graph, &root)?;
entered_node(&mut entered, root, children);
while !entered.is_empty() {
if let Some(to_enter) = find_next_child_to_enter(&mut entered, &mut exited) {
let children = at_enter(graph, &to_enter)?;
entered_node(&mut entered, to_enter, children);
} else {
let (to_exit, _) = entered.pop().unwrap();
at_exit(graph, &to_exit)?;
exited.insert(to_exit);
}
}
Ok(())
}
/// A non-recursive implementation of an infallible depth-first traversal
/// starting from `root`.
///
/// Assumes that nodes in the graph all have unique node ids.
///
/// `at_enter` runs when entering a node. It is expected to return an in-order
/// list of the children of the node. You can omit children from the list
/// returned if you want to skip the traversing subgraphs corresponding to
/// those children. If no children are omitted, `at_enter` can be thought
/// of as a function that processes the nodes of the graph in pre-order.
///
/// `at_exit` runs when exiting a node. It can be thought of as a function that
/// processes the nodes of the graph in post-order.
///
/// This function only enters and exits a node at most once and thus is safe to
/// run even if the graph contains a cycle.
pub fn nonrecursive_dft<Graph, NodeId, AtEnter, AtExit>(
graph: &Graph,
root: NodeId,
at_enter: &mut AtEnter,
at_exit: &mut AtExit,
) where
NodeId: std::cmp::Eq + std::hash::Hash,
AtEnter: FnMut(&Graph, &NodeId) -> Vec<NodeId>,
AtExit: FnMut(&Graph, &NodeId) -> (),
{
// All nodes that have been entered but not exited. Last node in the vec is
// the node that we most recently entered.
let mut entered = Vec::new();
// All nodes that have been exited.
let mut exited = HashSet::new();
// Pseudocode for the recursive version of this function would look like:
// ```
// atenter(graph, node)
// foreach child in children(graph, node):
// recursive_call(graph, child)
// atexit(graph, node)
// ```
// In this non-recursive implementation, you can think of the call stack as
// been replaced by `entered`. Every time an object is pushed into `entered`
// would have been a time you would have pushed a recursive call onto the
// call stack. Likewise, times an object is popped from `entered` would have
// been times when recursive calls leave the stack.
// Enter from the root.
let children = at_enter(graph, &root);
entered_node(&mut entered, root, children);
while !entered.is_empty() {
if let Some(to_enter) = find_next_child_to_enter(&mut entered, &mut exited) {
let children = at_enter(graph, &to_enter);
entered_node(&mut entered, to_enter, children);
} else {
// If this node has no more children to descend into,
// exit the current node and run `at_exit`.
let (to_exit, _) = entered.pop().unwrap();
at_exit(graph, &to_exit);
exited.insert(to_exit);
}
}
}
/// Same as [`nonrecursive_dft`], but allows changes to be made to the graph.
pub fn nonrecursive_dft_mut<Graph, NodeId, AtEnter, AtExit>(
graph: &mut Graph,
root: NodeId,
at_enter: &mut AtEnter,
at_exit: &mut AtExit,
) where
NodeId: std::cmp::Eq + std::hash::Hash + Clone,
AtEnter: FnMut(&mut Graph, &NodeId) -> Vec<NodeId>,
AtExit: FnMut(&mut Graph, &NodeId) -> (),
{
// Code in this method is identical to the code in `nonrecursive_dft`.
let mut entered = Vec::new();
let mut exited = HashSet::new();
let children = at_enter(graph, &root);
entered_node(&mut entered, root, children);
while !entered.is_empty() {
if let Some(to_enter) = find_next_child_to_enter(&mut entered, &mut exited) {
let children = at_enter(graph, &to_enter);
entered_node(&mut entered, to_enter, children);
} else {
let (to_exit, _) = entered.pop().unwrap();
at_exit(graph, &to_exit);
exited.insert(to_exit);
}
}
}
/// Add to `entered` that we have entered `node` and `node` has `children`.
fn entered_node<NodeId>(
entered: &mut Vec<(NodeId, Vec<NodeId>)>,
node: NodeId,
mut children: Vec<NodeId>,
) where
NodeId: std::cmp::Eq + std::hash::Hash,
{
// Reverse children because `find_next_child_to_enter` will traverse the
// list of children by popping them out from the back.
children.reverse();
entered.push((node, children))
}
/// Find the next child node, if any, that we have not entered.
fn find_next_child_to_enter<NodeId>(
entered: &mut Vec<(NodeId, Vec<NodeId>)>,
exited: &mut HashSet<NodeId>,
) -> Option<NodeId>
where
NodeId: std::cmp::Eq + std::hash::Hash,
{
let (_, children) = entered.last_mut().unwrap();
while let Some(child) = children.pop() {
if !exited.contains(&child) {
return Some(child);
}
}
return None;
}