1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! This module contains all of the helpers for upgrading/migrating the [`crate::Stash`].
use std::collections::BTreeMap;
use bytes::Bytes;
use mz_stash_types::{InternalStashError, StashError};
use crate::{AppendBatch, Data, Transaction, TypedCollection};
pub enum MigrationAction<K1, K2, V2> {
/// Deletes the provided key.
#[allow(unused)]
Delete(K1),
/// Inserts the provided key-value pair. The key must not currently exist!
Insert(K2, V2),
/// Update the key-value pair for the provided key.
Update(K1, (K2, V2)),
}
impl<K, V> TypedCollection<K, V>
where
K: Data,
V: Data,
{
/// Provided a closure, will migrate a [`TypedCollection`] of types `K` and `V` to types `K2`
/// and `V2`.
pub async fn migrate_to<K2, V2>(
&self,
tx: &Transaction<'_>,
f: impl for<'a> FnOnce(&'a BTreeMap<K, V>) -> Vec<MigrationAction<K, K2, V2>>,
) -> Result<(), StashError>
where
K2: Data,
V2: Data,
{
// Create a batch that we'll write to.
let collection = tx.collection::<K, V>(self.name).await?;
let lower = tx.upper(collection.id).await?;
let mut batch = collection.make_batch_lower(lower)?;
let current = match tx.peek_one(collection).await {
Ok(set) => set,
Err(err) => match err.inner {
InternalStashError::PeekSinceUpper(_) => {
// If the upper isn't > since, bump the upper and try again to find a sealed
// entry. Do this by appending the empty batch which will advance the upper.
drop(tx.append(vec![batch]).await?);
let lower = tx.upper(collection.id).await?;
batch = collection.make_batch_lower(lower)?;
tx.peek_one(collection).await?
}
_ => return Err(err),
},
};
// Note: this method exists, instead of using `StashCollection::append_to_batch` so we can
// append types other than K or V.
fn append_to_batch<A, B>(batch: &mut AppendBatch, k: &A, v: &B, diff: i64)
where
A: ::prost::Message,
B: ::prost::Message,
{
let key = k.encode_to_vec();
let val = v.encode_to_vec();
batch.entries.push(((key, val), batch.timestamp, diff));
}
// Call the provided closure, generating a list of update actions.
for op in f(¤t) {
match op {
MigrationAction::Delete(old_key) => {
let old_value = current.get(&old_key).expect("key to exist");
append_to_batch(&mut batch, &old_key, old_value, -1);
}
MigrationAction::Insert(key, value) => {
append_to_batch(&mut batch, &key, &value, 1);
}
MigrationAction::Update(old_key, (new_key, new_value)) => {
let old_value = current.get(&old_key).expect("key to exist");
append_to_batch(&mut batch, &old_key, old_value, -1);
append_to_batch(&mut batch, &new_key, &new_value, 1);
}
}
}
drop(tx.append(vec![batch]).await?);
Ok(())
}
/// Provided a closure, will migrate a [`TypedCollection`] of types `K` and `V` to
/// [`WireCompatible`] types `K2` and `V2`.
#[allow(unused)]
pub(crate) async fn migrate_compat<K2, V2>(
&self,
tx: &Transaction<'_>,
f: impl for<'a> FnOnce(&'a BTreeMap<K2, V2>) -> Vec<MigrationAction<K2, K2, V2>>,
) -> Result<(), StashError>
where
K2: Data + WireCompatible<K>,
V2: Data + WireCompatible<V>,
{
// Create a batch that we'll write to.
//
// Note: this opens the collection with the NEW types that we're migrating to. This is okay
// though because the new types are defined as being wire compatible with the old types.
let collection = tx.collection::<K2, V2>(self.name).await?;
let lower = tx.upper(collection.id).await?;
let mut batch = collection.make_batch_lower(lower)?;
let current = match tx.peek_one(collection).await {
Ok(set) => set,
Err(err) => match err.inner {
InternalStashError::PeekSinceUpper(_) => {
// If the upper isn't > since, bump the upper and try again to find a sealed
// entry. Do this by appending the empty batch which will advance the upper.
tx.append(vec![batch]).await?;
let lower = tx.upper(collection.id).await?;
batch = collection.make_batch_lower(lower)?;
tx.peek_one(collection).await?
}
_ => return Err(err),
},
};
// Call the provided closure, generating a list of update actions.
for op in f(¤t) {
match op {
MigrationAction::Delete(old_key) => {
let old_value = current.get(&old_key).expect("key to exist");
collection.append_to_batch(&mut batch, &old_key, old_value, -1);
}
MigrationAction::Insert(key, value) => {
collection.append_to_batch(&mut batch, &key, &value, 1);
}
MigrationAction::Update(old_key, (new_key, new_value)) => {
let old_value = current.get(&old_key).expect("key to exist");
collection.append_to_batch(&mut batch, &old_key, old_value, -1);
collection.append_to_batch(&mut batch, &new_key, &new_value, 1);
}
}
}
tx.append(vec![batch]).await?;
Ok(())
}
/// Initializes a [`TypedCollection`] with the values provided in `values`.
///
/// # Panics
/// * If the [`TypedCollection`] is not empty.
pub async fn initialize(
&self,
tx: &Transaction<'_>,
values: impl IntoIterator<Item = (K, V)>,
) -> Result<(), StashError> {
self.migrate_to(tx, |entries| {
assert!(entries.is_empty());
values
.into_iter()
.map(|(key, val)| MigrationAction::Insert(key, val))
.collect()
})
.await?;
Ok(())
}
}
/// Denotes that `Self` is wire compatible with type `T`.
///
/// You should not implement this yourself, instead use the `wire_compatible!` macro.
pub unsafe trait WireCompatible<T: prost::Message>: prost::Message + Default {
/// Converts the type `T` into `Self` by serializing `T` and deserializing as `Self`.
fn convert(old: &T) -> Self {
let bytes = old.encode_to_vec();
// Note: use Bytes to enable possible re-use of the underlying buffer.
let bytes = Bytes::from(bytes);
Self::decode(bytes).expect("wire compatible")
}
}
// SAFETY: A message type is trivially wire compatible with itself.
unsafe impl<T: prost::Message + Default + Clone> WireCompatible<T> for T {
fn convert(old: &Self) -> Self {
old.clone()
}
}
/// Defines one protobuf type as wire compatible with another.
///
/// ```text
/// wire_compatible!(objects_v28::DatabaseKey with objects_v27::DatabaseKey);
/// ```
///
/// Internally this will implement the `WireCompatible<B> for <A>`, e.g.
/// `WireCompatible<objects_v27::DatabaseKey> for objects_v28::DatabaseKey` and generate `proptest`
/// cases that will create arbitrary objects of type `B` and assert they can be deserialized with
/// type `A`, and vice versa.
#[macro_export]
macro_rules! wire_compatible {
($a:ident $(:: $a_sub:ident)* with $b:ident $(:: $b_sub:ident)*) => {
::static_assertions::assert_impl_all!(
$a $(::$a_sub)* : ::proptest::arbitrary::Arbitrary, ::prost::Message, Default,
);
::static_assertions::assert_impl_all!(
$b $(::$b_sub)* : ::proptest::arbitrary::Arbitrary, ::prost::Message, Default,
);
// SAFETY: Below we assert that these types are wire compatible by generating arbitrary
// structs, encoding in one, and then decoding in the other.
unsafe impl $crate::upgrade::WireCompatible< $b $(::$b_sub)* > for $a $(::$a_sub)* {}
unsafe impl $crate::upgrade::WireCompatible< $a $(::$a_sub)* > for $b $(::$b_sub)* {}
::paste::paste! {
::proptest::proptest! {
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // slow
fn [<proptest_wire_compat_ $a:snake $(_$a_sub:snake)* _to_ $b:snake $(_$b_sub:snake)* >](a: $a $(::$a_sub)* ) {
use ::prost::Message;
let a_bytes = a.encode_to_vec();
let b_decoded = $b $(::$b_sub)*::decode(&a_bytes[..]);
::proptest::prelude::prop_assert!(b_decoded.is_ok());
// Maybe superfluous, but this is a method called in production.
let b_decoded = b_decoded.expect("asserted Ok");
let b_converted: $b $(::$b_sub)* = $crate::upgrade::WireCompatible::convert(&a);
assert_eq!(b_decoded, b_converted);
let b_bytes = b_decoded.encode_to_vec();
::proptest::prelude::prop_assert_eq!(a_bytes, b_bytes, "a and b serialize differently");
}
#[mz_ore::test]
#[cfg_attr(miri, ignore)] // slow
fn [<proptest_wire_compat_ $b:snake $(_$b_sub:snake)* _to_ $a:snake $(_$a_sub:snake)* >](b: $b $(::$b_sub)* ) {
use ::prost::Message;
let b_bytes = b.encode_to_vec();
let a_decoded = $a $(::$a_sub)*::decode(&b_bytes[..]);
::proptest::prelude::prop_assert!(a_decoded.is_ok());
// Maybe superfluous, but this is a method called in production.
let a_decoded = a_decoded.expect("asserted Ok");
let a_converted: $a $(::$a_sub)* = $crate::upgrade::WireCompatible::convert(&b);
assert_eq!(a_decoded, a_converted);
let a_bytes = a_decoded.encode_to_vec();
::proptest::prelude::prop_assert_eq!(a_bytes, b_bytes, "a and b serialize differently");
}
}
}
};
}
pub use wire_compatible;