1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.

//! Apply rewrites to [`Model`] instances.
//!
//! The public interface consists of the [`Model::optimize`] method.

mod rule;

use std::collections::HashSet;

use super::attribute::core::{Attribute, RequiredAttributes};
use super::model::{BoxId, Model};

impl Model {
    pub fn optimize(&mut self) {
        rewrite_model(self);
    }
}

/// Trait that all rewrite rules must implement.
pub(crate) trait Rule {
    /// The type of matches associated with this [`Rule`].
    type Match;

    /// The name of the rule, used for debugging and tracing purposes.
    fn name(&self) -> &'static str;

    /// The [`ApplyStrategy`] for the rule.
    fn strategy(&self) -> ApplyStrategy;

    /// Derived attributes required by this [`Rule`].
    fn required_attributes(&self) -> HashSet<Box<dyn Attribute>>;

    /// Determines how to rewrite the box.
    ///
    /// Returns None if the box does not need to be rewritten.
    fn check(&self, model: &Model, box_id: BoxId) -> Option<Self::Match>;

    /// Rewrites the [`Model`] based on the parameters of [`Self::Match`]
    /// determined by a previous [`Rule::check`] call.
    fn rewrite(&self, model: &mut Model, mat: Self::Match);
}

/// A trait with a blanket implementation that abstracts over the
/// associated [`Rule::Match`] and its use sites [`Rule::check`] and [`Rule::rewrite`]
/// behind [`ApplyRule::apply`] method.
///
/// Allows for holding a vector of rules in a `Vec<dyn ApplyRule>` instances.
pub(crate) trait ApplyRule {
    /// The name of the rule, used for debugging and tracing purposes.
    fn name(&self) -> &'static str;

    /// The [`ApplyStrategy`] for the rule.
    fn strategy(&self) -> ApplyStrategy;

    /// Derived attributes required by this [`ApplyRule`].
    fn required_attributes(&self) -> HashSet<Box<dyn Attribute>>;

    /// Attempts to apply the rewrite to a subgraph rooted at the given `box_id`.
    /// Returns whether the attempt was successful.
    fn apply(&self, model: &mut Model, box_id: BoxId) -> bool;
}

/// Blanket implementation for [`ApplyRule`] for all [`Rule`] types.
impl<U: Rule> ApplyRule for U {
    #[inline(always)]
    fn name(&self) -> &'static str {
        self.name()
    }

    #[inline(always)]
    fn strategy(&self) -> ApplyStrategy {
        self.strategy()
    }

    #[inline(always)]
    fn required_attributes(&self) -> HashSet<Box<dyn Attribute>> {
        self.required_attributes()
    }

    /// Apply the [`Rule::rewrite`] and return `true` if [`Rule::check`] returns
    /// a [`Rule::Match`], or return `false` otherwise.
    fn apply(&self, model: &mut Model, box_id: BoxId) -> bool {
        if let Some(mat) = self.check(model, box_id) {
            self.rewrite(model, mat);
            true
        } else {
            false
        }
    }
}

/// Where and how a rule should be applied to boxes in the model.
#[allow(dead_code)]
#[derive(Debug, Copy, Clone)]
pub(crate) enum ApplyStrategy {
    // Apply only to the top box.
    TopBox,
    // Apply to all boxes. Customize with the order in which the boxes should be
    // visited.
    AllBoxes(VisitOrder),
}

#[allow(dead_code)]
#[derive(Debug, Copy, Clone)]
pub(crate) enum VisitOrder {
    Pre,
    Post,
}

impl Default for VisitOrder {
    /// Call if a rule does not care about the order in which it is applied.
    fn default() -> Self {
        VisitOrder::Post
    }
}

/// Apply all available rewrite rules to the model.
pub fn rewrite_model(model: &mut Model) {
    let rules: Vec<Box<dyn ApplyRule>> = vec![
        // simplify outer joins first
        Box::new(rule::simplify_outer_joins::SimplifyOuterJoins),
    ];
    apply_rules_to_model(model, rules);
    model.garbage_collect();

    // At the end of the process, update box and quantifier ids to make it
    // easier to compare the graph before and after optimization.
    model.update_ids();
}

/// Transform the model by applying a list of rewrite rules.
fn apply_rules_to_model(model: &mut Model, rules: Vec<Box<dyn ApplyRule>>) {
    // collect a set of attributes required by the given rules
    let attributes = rules
        .iter()
        .flat_map(|r| r.required_attributes())
        .collect::<HashSet<_>>();
    let attributes = RequiredAttributes::from(attributes);
    // derived initial values of the required attributes
    attributes.derive(model, model.top_box);

    let (top_box, other): (Vec<Box<dyn ApplyRule>>, Vec<Box<dyn ApplyRule>>) = rules
        .into_iter()
        .partition(|r| matches!(r.strategy(), ApplyStrategy::TopBox));
    let (pre, post): (Vec<Box<dyn ApplyRule>>, Vec<Box<dyn ApplyRule>>) = other
        .into_iter()
        .partition(|r| matches!(r.strategy(), ApplyStrategy::AllBoxes(VisitOrder::Pre)));

    let mut rewritten = true;
    while rewritten {
        let mut rewritten_in_top = false;
        let mut rewritten_in_pre = false;
        let mut rewritten_in_post = false;

        for rule in &top_box {
            if rule.apply(model, model.top_box) {
                rewritten_in_top |= true;
                attributes.derive(model, model.top_box);
            }
        }

        let _ = model.try_visit_mut_pre_post(
            &mut |model, box_id| -> Result<(), ()> {
                for rule in pre.iter() {
                    if rule.apply(model, *box_id) {
                        rewritten_in_pre |= true;
                        attributes.derive(model, model.top_box);
                    }
                }
                Ok(())
            },
            &mut |model, box_id| -> Result<(), ()> {
                for rule in post.iter() {
                    if rule.apply(model, *box_id) {
                        rewritten_in_post |= true;
                        attributes.derive(model, model.top_box);
                    }
                }
                Ok(())
            },
        );

        rewritten = rewritten_in_top | rewritten_in_pre | rewritten_in_post;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::query_model::model::*;
    use crate::query_model::test::util::*;

    #[test]
    fn it_applies_a_simple_rule() {
        let mut model = test_model();
        let src_id = model.make_box(qgm::get(5).into());

        let rules: Vec<Box<dyn ApplyRule>> = vec![
            // create E(src_id, curr_id) quantifiers in pre-visit
            Box::new(ConnectAll::new(src_id, VisitOrder::Pre)),
            // create A(src_id, curr_id) quantifiers in post-visit
            Box::new(ConnectAll::new(src_id, VisitOrder::Post)),
        ];

        apply_rules_to_model(&mut model, rules);

        let act_result = model
            .get_box(src_id)
            .ranging_quantifiers()
            .map(|q| (q.parent_box, q.quantifier_type))
            .collect::<Vec<_>>();

        let exp_result = vec![
            (BoxId(4), QuantifierType::EXISTENTIAL),
            (BoxId(1), QuantifierType::EXISTENTIAL),
            (BoxId(0), QuantifierType::EXISTENTIAL),
            (BoxId(0), QuantifierType::ALL),
            (BoxId(1), QuantifierType::ALL),
            (BoxId(2), QuantifierType::EXISTENTIAL),
            (BoxId(2), QuantifierType::ALL),
            (BoxId(3), QuantifierType::EXISTENTIAL),
            (BoxId(3), QuantifierType::ALL),
            (BoxId(4), QuantifierType::ALL),
        ];

        assert_eq!(act_result, exp_result);
    }

    /// Create the following model of select boxes:
    ///
    ///             --------------
    fn test_model() -> Model {
        let mut model = Model::default();

        // vertices
        let b0 = model.make_box(Select::default().into());
        let b1 = model.make_box(Select::default().into());
        let b2 = model.make_box(Select::default().into());
        let b3 = model.make_box(Select::default().into());
        let b4 = model.make_box(Select::default().into());

        // edges
        model.make_quantifier(QuantifierType::FOREACH, b0, b1);
        model.make_quantifier(QuantifierType::FOREACH, b0, b2);
        model.make_quantifier(QuantifierType::FOREACH, b1, b3);
        model.make_quantifier(QuantifierType::FOREACH, b2, b3);
        model.make_quantifier(QuantifierType::FOREACH, b1, b4);
        model.make_quantifier(QuantifierType::FOREACH, b1, b4);
        model.make_quantifier(QuantifierType::FOREACH, b2, b4);
        model.make_quantifier(QuantifierType::FOREACH, b3, b4);

        // top box
        model.top_box = b4;

        model
    }

    /// A test [`Rule`] that creates quantifiers between `src_id`
    /// and all other nodes in the given [`VisitOrder`].
    struct ConnectAll {
        src_id: BoxId,
        visit_order: VisitOrder,
    }

    impl ConnectAll {
        fn new(src_id: BoxId, visit_order: VisitOrder) -> ConnectAll {
            ConnectAll {
                src_id,
                visit_order,
            }
        }

        fn quantifier_type(&self) -> QuantifierType {
            match self.visit_order {
                VisitOrder::Pre => QuantifierType::EXISTENTIAL,
                VisitOrder::Post => QuantifierType::ALL,
            }
        }

        fn matches_quantifer(&self, quantifier_type: QuantifierType) -> bool {
            match self.visit_order {
                VisitOrder::Pre => matches!(quantifier_type, QuantifierType::EXISTENTIAL),
                VisitOrder::Post => matches!(quantifier_type, QuantifierType::ALL),
            }
        }

        fn connected(&self, model: &Model, tgt_id: BoxId) -> bool {
            model.quantifiers().any(|q| {
                let q = q.borrow();
                self.matches_quantifer(q.quantifier_type)
                    && (q.input_box == self.src_id && q.parent_box == tgt_id)
            })
        }
    }

    /// A [`Rule::Match`] for the [`ConnectAll`] rule.
    struct Connect {
        src_id: BoxId,
        tgt_id: BoxId,
        quantifier_type: QuantifierType,
    }

    impl Rule for ConnectAll {
        type Match = Connect;

        fn name(&self) -> &'static str {
            "connect-all"
        }

        fn strategy(&self) -> ApplyStrategy {
            ApplyStrategy::AllBoxes(self.visit_order)
        }

        fn required_attributes(&self) -> HashSet<Box<dyn Attribute>> {
            HashSet::new()
        }

        fn check(&self, model: &Model, box_id: BoxId) -> Option<Connect> {
            if box_id != self.src_id && !self.connected(model, box_id) {
                Some(Connect {
                    src_id: self.src_id,
                    tgt_id: box_id,
                    quantifier_type: self.quantifier_type(),
                })
            } else {
                None
            }
        }

        fn rewrite(&self, model: &mut Model, mat: Connect) {
            // println!("{}:{}⇒{}", self.quantifier_type, self.src_id, self.tgt_id);
            model.make_quantifier(mat.quantifier_type, mat.src_id, mat.tgt_id);
        }
    }
}