1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! Transformations of SQL IR, before decorrelation.
use std::collections::{BTreeMap, BTreeSet};
use std::sync::LazyLock;
use std::{iter, mem};
use itertools::Itertools;
use mz_expr::visit::Visit;
use mz_expr::WindowFrame;
use mz_expr::{ColumnOrder, UnaryFunc, VariadicFunc};
use mz_ore::stack::RecursionLimitError;
use mz_repr::{ColumnName, ColumnType, RelationType, ScalarType};
use crate::plan::expr::{
AbstractExpr, AggregateFunc, AggregateWindowExpr, ColumnRef, HirRelationExpr, HirScalarExpr,
ValueWindowExpr, ValueWindowFunc, WindowExpr,
};
use crate::plan::{AggregateExpr, WindowExprType};
/// Rewrites predicates that contain subqueries so that the subqueries
/// appear in their own later predicate when possible.
///
/// For example, this function rewrites this expression
///
/// ```text
/// Filter {
/// predicates: [a = b AND EXISTS (<subquery 1>) AND c = d AND (<subquery 2>) = e]
/// }
/// ```
///
/// like so:
///
/// ```text
/// Filter {
/// predicates: [
/// a = b AND c = d,
/// EXISTS (<subquery>),
/// (<subquery 2>) = e,
/// ]
/// }
/// ```
///
/// The rewrite causes decorrelation to incorporate prior predicates into
/// the outer relation upon which the subquery is evaluated. In the above
/// rewritten example, the `EXISTS (<subquery>)` will only be evaluated for
/// outer rows where `a = b AND c = d`. The second subquery, `(<subquery 2>)
/// = e`, will be further restricted to outer rows that match `A = b AND c =
/// d AND EXISTS(<subquery>)`. This can vastly reduce the cost of the
/// subquery, especially when the original conjunction contains join keys.
pub fn split_subquery_predicates(expr: &mut HirRelationExpr) {
fn walk_relation(expr: &mut HirRelationExpr) {
#[allow(deprecated)]
expr.visit_mut(0, &mut |expr, _| match expr {
HirRelationExpr::Map { scalars, .. } => {
for scalar in scalars {
walk_scalar(scalar);
}
}
HirRelationExpr::CallTable { exprs, .. } => {
for expr in exprs {
walk_scalar(expr);
}
}
HirRelationExpr::Filter { predicates, .. } => {
let mut subqueries = vec![];
for predicate in &mut *predicates {
walk_scalar(predicate);
extract_conjuncted_subqueries(predicate, &mut subqueries);
}
// TODO(benesch): we could be smarter about the order in which
// we emit subqueries. At the moment we just emit in the order
// we discovered them, but ideally we'd emit them in an order
// that accounted for their cost/selectivity. E.g., low-cost,
// high-selectivity subqueries should go first.
for subquery in subqueries {
predicates.push(subquery);
}
}
_ => (),
});
}
fn walk_scalar(expr: &mut HirScalarExpr) {
#[allow(deprecated)]
expr.visit_mut(&mut |expr| match expr {
HirScalarExpr::Exists(input) | HirScalarExpr::Select(input) => walk_relation(input),
_ => (),
})
}
fn contains_subquery(expr: &HirScalarExpr) -> bool {
let mut found = false;
expr.visit(&mut |expr| match expr {
HirScalarExpr::Exists(_) | HirScalarExpr::Select(_) => found = true,
_ => (),
});
found
}
/// Extracts subqueries from a conjunction into `out`.
///
/// For example, given an expression like
///
/// ```text
/// a = b AND EXISTS (<subquery 1>) AND c = d AND (<subquery 2>) = e
/// ```
///
/// this function rewrites the expression to
///
/// ```text
/// a = b AND true AND c = d AND true
/// ```
///
/// and returns the expression fragments `EXISTS (<subquery 1>)` and
/// `(<subquery 2>) = e` in the `out` vector.
fn extract_conjuncted_subqueries(expr: &mut HirScalarExpr, out: &mut Vec<HirScalarExpr>) {
match expr {
HirScalarExpr::CallVariadic {
func: VariadicFunc::And,
exprs,
} => {
exprs
.into_iter()
.for_each(|e| extract_conjuncted_subqueries(e, out));
}
expr if contains_subquery(expr) => {
out.push(mem::replace(expr, HirScalarExpr::literal_true()))
}
_ => (),
}
}
walk_relation(expr)
}
/// Rewrites quantified comparisons into simpler EXISTS operators.
///
/// Note that this transformation is only valid when the expression is
/// used in a context where the distinction between `FALSE` and `NULL`
/// is immaterial, e.g., in a `WHERE` clause or a `CASE` condition, or
/// when the inputs to the comparison are non-nullable. This function is careful
/// to only apply the transformation when it is valid to do so.
///
/// ```ignore
/// WHERE (SELECT any(<pred>) FROM <rel>)
/// =>
/// WHERE EXISTS(SELECT * FROM <rel> WHERE <pred>)
///
/// WHERE (SELECT all(<pred>) FROM <rel>)
/// =>
/// WHERE NOT EXISTS(SELECT * FROM <rel> WHERE (NOT <pred>) OR <pred> IS NULL)
/// ```
///
/// See Section 3.5 of "Execution Strategies for SQL Subqueries" by
/// M. Elhemali, et al.
pub fn try_simplify_quantified_comparisons(expr: &mut HirRelationExpr) {
fn walk_relation(expr: &mut HirRelationExpr, outers: &[RelationType]) {
match expr {
HirRelationExpr::Map { scalars, input } => {
walk_relation(input, outers);
let mut outers = outers.to_vec();
outers.insert(0, input.typ(&outers, &NO_PARAMS));
for scalar in scalars {
walk_scalar(scalar, &outers, false);
let (inner, outers) = outers
.split_first_mut()
.expect("outers known to have at least one element");
let scalar_type = scalar.typ(outers, inner, &NO_PARAMS);
inner.column_types.push(scalar_type);
}
}
HirRelationExpr::Filter { predicates, input } => {
walk_relation(input, outers);
let mut outers = outers.to_vec();
outers.insert(0, input.typ(&outers, &NO_PARAMS));
for pred in predicates {
walk_scalar(pred, &outers, true);
}
}
HirRelationExpr::CallTable { exprs, .. } => {
let mut outers = outers.to_vec();
outers.insert(0, RelationType::empty());
for scalar in exprs {
walk_scalar(scalar, &outers, false);
}
}
HirRelationExpr::Join { left, right, .. } => {
walk_relation(left, outers);
let mut outers = outers.to_vec();
outers.insert(0, left.typ(&outers, &NO_PARAMS));
walk_relation(right, &outers);
}
expr => {
#[allow(deprecated)]
let _ = expr.visit1_mut(0, &mut |expr, _| -> Result<(), ()> {
walk_relation(expr, outers);
Ok(())
});
}
}
}
fn walk_scalar(expr: &mut HirScalarExpr, outers: &[RelationType], mut in_filter: bool) {
#[allow(deprecated)]
expr.visit_mut_pre(&mut |e| match e {
HirScalarExpr::Exists(input) => walk_relation(input, outers),
HirScalarExpr::Select(input) => {
walk_relation(input, outers);
// We're inside of a `(SELECT ...)` subquery. Now let's see if
// it has the form `(SELECT <any|all>(...) FROM <input>)`.
// Ideally we could do this with one pattern, but Rust's pattern
// matching engine is not powerful enough, so we have to do this
// in stages; the early returns avoid brutal nesting.
let (func, expr, input) = match &mut **input {
HirRelationExpr::Reduce {
group_key,
aggregates,
input,
expected_group_size: _,
} if group_key.is_empty() && aggregates.len() == 1 => {
let agg = &mut aggregates[0];
(&agg.func, &mut agg.expr, input)
}
_ => return,
};
if !in_filter && column_type(outers, input, expr).nullable {
// Unless we're directly inside of a WHERE, this
// transformation is only valid if the expression involved
// is non-nullable.
return;
}
match func {
AggregateFunc::Any => {
// Found `(SELECT any(<expr>) FROM <input>)`. Rewrite to
// `EXISTS(SELECT 1 FROM <input> WHERE <expr>)`.
*e = input.take().filter(vec![expr.take()]).exists();
}
AggregateFunc::All => {
// Found `(SELECT all(<expr>) FROM <input>)`. Rewrite to
// `NOT EXISTS(SELECT 1 FROM <input> WHERE NOT <expr> OR <expr> IS NULL)`.
//
// Note that negation of <expr> alone is insufficient.
// Consider that `WHERE <pred>` filters out rows if
// `<pred>` is false *or* null. To invert the test, we
// need `NOT <pred> OR <pred> IS NULL`.
let expr = expr.take();
let filter = expr.clone().not().or(expr.call_is_null());
*e = input.take().filter(vec![filter]).exists().not();
}
_ => (),
}
}
_ => {
// As soon as we see *any* scalar expression, we are no longer
// directly inside of a filter.
in_filter = false;
}
})
}
walk_relation(expr, &[])
}
/// An empty parameter type map.
///
/// These transformations are expected to run after parameters are bound, so
/// there is no need to provide any parameter type information.
static NO_PARAMS: LazyLock<BTreeMap<usize, ScalarType>> = LazyLock::new(BTreeMap::new);
fn column_type(
outers: &[RelationType],
inner: &HirRelationExpr,
expr: &HirScalarExpr,
) -> ColumnType {
let inner_type = inner.typ(outers, &NO_PARAMS);
expr.typ(outers, &inner_type, &NO_PARAMS)
}
/// # Aims and scope
///
/// The aim here is to amortize the overhead of the MIR window function pattern
/// (see `window_func_applied_to`) by fusing groups of window function calls such
/// that each group can be performed by one instance of the window function MIR
/// pattern.
///
/// For now, we fuse only value window function calls and window aggregations.
/// (We probably won't need to fuse scalar window functions for a long time.)
///
/// For now, we can fuse value window function calls and window aggregations where the
/// A. partition by
/// B. order by
/// C. window frame
/// D. ignore nulls for value window functions and distinct for window aggregations
/// are all the same. (See `extract_options`.)
/// (Later, we could improve this to only need A. to be the same. This would require
/// much more code changes, because then we'd have to blow up `ValueWindowExpr`.
/// TODO: As a much simpler intermediate step, at least we should ignore options that
/// don't matter. For example, we should be able to fuse a `lag` that has a default
/// frame with a `first_value` that has some custom frame, because `lag` is not
/// affected by the frame.)
/// Note that we fuse value window function calls and window aggregations separately.
///
/// # Implementation
///
/// At a high level, what we are going to do is look for Maps with more than one window function
/// calls, and for each Map
/// - remove some groups of window function call expressions from the Map's `scalars`;
/// - insert a fused version of each group;
/// - insert some expressions that decompose the results of the fused calls;
/// - update some column references in `scalars`: those that refer to window function results that
/// participated in fusion, as well as those that refer to columns that moved around due to
/// removing and inserting expressions.
/// - insert a Project above the matched Map to permute columns back to their original places.
///
/// It would be tempting to find groups simply by taking a list of all window function calls
/// and calling `group_by` with a key function that extracts the above A. B. C. D. properties,
/// but a complication is that the possible groups that we could theoretically fuse overlap.
/// This is because when forming groups we need to also take into account column references
/// that point inside the same Map. For example, imagine a Map with the following scalar
/// expressions:
/// C1, E1, C2, C3, where
/// - E1 refers to C1
/// - C3 refers to E1.
/// In this situation, we could either
/// - fuse C1 and C2, and put the fused expression in the place of C1 (so that E1 can keep referring
/// to it);
/// - or fuse C2 and C3.
/// However, we can't fuse all of C1, C2, C3 into one call, because then there would be
/// no appropriate place for the fused expression: it would have to be both before and after E1.
///
/// So, how we actually form the groups is that, keeping track of a list of non-overlapping groups,
/// we go through `scalars`, try to put each expression into each of our groups, and the first of
/// these succeed. When trying to put an expression into a group, we need to be mindful about column
/// references inside the same Map, as noted above. A constraint that we impose on ourselves for
/// sanity is that the fused version of each group will be inserted at the place where the first
/// element of the group originally was. This means that the only condition that we need to check on
/// column references when adding an expression to a group is that all column references in a group
/// should be to columns that are earlier than the first element of the group. (No need to check
/// column references in the other direction, i.e., references in other expressions that refer to
/// columns in the group.)
pub fn fuse_window_functions(
root: &mut HirRelationExpr,
_context: &crate::plan::lowering::Context,
) -> Result<(), RecursionLimitError> {
impl HirScalarExpr {
/// Similar to `MirScalarExpr::support`, but adapted to `HirScalarExpr` in a special way: it
/// considers column references that target the root level.
/// (See `visit_columns_referring_to_root_level`.)
fn support(&self) -> Vec<usize> {
let mut result = Vec::new();
self.visit_columns_referring_to_root_level(&mut |c| result.push(c));
result
}
/// Changes column references in `self` by the given remapping.
/// Panics if a referred column is not present in `idx_map`!
fn remap(mut self, idx_map: &BTreeMap<usize, usize>) -> HirScalarExpr {
self.visit_columns_referring_to_root_level_mut(&mut |c| {
*c = idx_map[c];
});
self
}
}
/// Those options of a window function call that are relevant for fusion.
#[derive(PartialEq, Eq)]
enum WindowFuncCallOptions {
Value(ValueWindowFuncCallOptions),
Agg(AggregateWindowFuncCallOptions),
}
#[derive(PartialEq, Eq)]
struct ValueWindowFuncCallOptions {
partition_by: Vec<HirScalarExpr>,
outer_order_by: Vec<HirScalarExpr>,
inner_order_by: Vec<ColumnOrder>,
window_frame: WindowFrame,
ignore_nulls: bool,
}
#[derive(PartialEq, Eq)]
struct AggregateWindowFuncCallOptions {
partition_by: Vec<HirScalarExpr>,
outer_order_by: Vec<HirScalarExpr>,
inner_order_by: Vec<ColumnOrder>,
window_frame: WindowFrame,
distinct: bool,
}
/// Helper function to extract the above options.
fn extract_options(call: &HirScalarExpr) -> WindowFuncCallOptions {
match call {
HirScalarExpr::Windowing(WindowExpr {
func:
WindowExprType::Value(ValueWindowExpr {
order_by: inner_order_by,
window_frame,
ignore_nulls,
func: _,
args: _,
}),
partition_by,
order_by: outer_order_by,
}) => WindowFuncCallOptions::Value(ValueWindowFuncCallOptions {
partition_by: partition_by.clone(),
outer_order_by: outer_order_by.clone(),
inner_order_by: inner_order_by.clone(),
window_frame: window_frame.clone(),
ignore_nulls: ignore_nulls.clone(),
}),
HirScalarExpr::Windowing(WindowExpr {
func:
WindowExprType::Aggregate(AggregateWindowExpr {
aggregate_expr: AggregateExpr {
distinct,
func: _,
expr: _,
},
order_by: inner_order_by,
window_frame,
}),
partition_by,
order_by: outer_order_by,
}) => WindowFuncCallOptions::Agg(AggregateWindowFuncCallOptions {
partition_by: partition_by.clone(),
outer_order_by: outer_order_by.clone(),
inner_order_by: inner_order_by.clone(),
window_frame: window_frame.clone(),
distinct: distinct.clone(),
}),
_ => panic!("extract_options should only be called on value window functions or window aggregations"),
}
}
struct FusionGroup {
/// The original column index of the first element of the group. (This is an index into the
/// Map's `scalars` plus the arity of the Map's input.)
first_col: usize,
/// The options of all the window function calls in the group. (Must be the same for all the
/// calls.)
options: WindowFuncCallOptions,
/// The calls in the group, with their original column indexes.
calls: Vec<(usize, HirScalarExpr)>,
}
impl FusionGroup {
/// Creates a window function call that is a fused version of all the calls in the group.
/// `new_col` is the column index where the fused call will be inserted at.
fn fuse(self, new_col: usize) -> (HirScalarExpr, Vec<HirScalarExpr>) {
let fused = match self.options {
WindowFuncCallOptions::Value(options) => {
let (fused_funcs, fused_args): (Vec<_>, Vec<_>) = self
.calls
.iter()
.map(|(_idx, call)| {
if let HirScalarExpr::Windowing(WindowExpr {
func:
WindowExprType::Value(ValueWindowExpr {
func,
args,
order_by: _,
window_frame: _,
ignore_nulls: _,
}),
partition_by: _,
order_by: _,
}) = call
{
(func.clone(), (**args).clone())
} else {
panic!("unknown window function in FusionGroup")
}
})
.unzip();
let fused_args = HirScalarExpr::CallVariadic {
func: VariadicFunc::RecordCreate {
// These field names are not important, because this record will only be an
// intermediate expression, which we'll manipulate further before it ends up
// anywhere where a column name would be visible.
field_names: iter::repeat(ColumnName::from(""))
.take(fused_args.len())
.collect(),
},
exprs: fused_args,
};
HirScalarExpr::Windowing(WindowExpr {
func: WindowExprType::Value(ValueWindowExpr {
func: ValueWindowFunc::Fused(fused_funcs),
args: Box::new(fused_args),
order_by: options.inner_order_by,
window_frame: options.window_frame,
ignore_nulls: options.ignore_nulls,
}),
partition_by: options.partition_by,
order_by: options.outer_order_by,
})
}
WindowFuncCallOptions::Agg(options) => {
let (fused_funcs, fused_args): (Vec<_>, Vec<_>) = self
.calls
.iter()
.map(|(_idx, call)| {
if let HirScalarExpr::Windowing(WindowExpr {
func:
WindowExprType::Aggregate(AggregateWindowExpr {
aggregate_expr:
AggregateExpr {
func,
expr,
distinct: _,
},
order_by: _,
window_frame: _,
}),
partition_by: _,
order_by: _,
}) = call
{
(func.clone(), (**expr).clone())
} else {
panic!("unknown window function in FusionGroup")
}
})
.unzip();
let fused_args = HirScalarExpr::CallVariadic {
func: VariadicFunc::RecordCreate {
field_names: iter::repeat(ColumnName::from(""))
.take(fused_args.len())
.collect(),
},
exprs: fused_args,
};
HirScalarExpr::Windowing(WindowExpr {
func: WindowExprType::Aggregate(AggregateWindowExpr {
aggregate_expr: AggregateExpr {
func: AggregateFunc::FusedWindowAgg { funcs: fused_funcs },
expr: Box::new(fused_args),
distinct: options.distinct,
},
order_by: options.inner_order_by,
window_frame: options.window_frame,
}),
partition_by: options.partition_by,
order_by: options.outer_order_by,
})
}
};
let decompositions = (0..self.calls.len())
.map(|field| HirScalarExpr::CallUnary {
func: UnaryFunc::RecordGet(mz_expr::func::RecordGet(field)),
expr: Box::new(HirScalarExpr::Column(ColumnRef {
level: 0,
column: new_col,
})),
})
.collect();
(fused, decompositions)
}
}
let is_value_or_agg_window_func_call = |scalar_expr: &HirScalarExpr| -> bool {
// Look for calls only at the root of scalar expressions. This is enough
// because they are always there, see 72e84bb78.
match scalar_expr {
HirScalarExpr::Windowing(WindowExpr {
func: WindowExprType::Value(ValueWindowExpr { func, .. }),
..
}) => {
// Exclude those calls that are already fused. (We shouldn't currently
// encounter these, because we just do one pass, but it's better to be
// robust against future code changes.)
!matches!(func, ValueWindowFunc::Fused(..))
}
HirScalarExpr::Windowing(WindowExpr {
func:
WindowExprType::Aggregate(AggregateWindowExpr {
aggregate_expr: AggregateExpr { func, .. },
..
}),
..
}) => !matches!(func, AggregateFunc::FusedWindowAgg { .. }),
_ => false,
}
};
root.try_visit_mut_post(&mut |rel_expr| {
match rel_expr {
HirRelationExpr::Map { input, scalars } => {
// There will be various variable names involving `idx` or `col`:
// - `idx` will always be an index into `scalars` or something similar,
// - `col` will always be a column index,
// which is often `arity_before_map` + an index into `scalars`.
let arity_before_map = input.arity();
let orig_num_scalars = scalars.len();
// Collect all value window function calls and window aggregations with their column
// indexes.
let value_or_agg_window_func_calls = scalars
.iter()
.enumerate()
.filter(|(_idx, scalar_expr)| is_value_or_agg_window_func_call(scalar_expr))
.map(|(idx, call)| (idx + arity_before_map, call.clone()))
.collect_vec();
// Exit early if obviously no chance for fusion.
if value_or_agg_window_func_calls.len() <= 1 {
// Note that we are doing this only for performance. All plans should be exactly
// the same even if we comment out the following line.
return Ok(());
}
// Determine the fusion groups. (Each group will later be fused into one window
// function call.)
// Note that this has a quadratic run time with value_or_agg_window_func_calls in
// the worst case. However, this is fine even with 1000 window function calls.
let mut groups: Vec<FusionGroup> = Vec::new();
for (col, call) in value_or_agg_window_func_calls {
let options = extract_options(&call);
let support = call.support();
let to_fuse_with = groups
.iter_mut()
.filter(|group| {
group.options == options && support.iter().all(|c| *c < group.first_col)
})
.next();
if let Some(group) = to_fuse_with {
group.calls.push((col, call.clone()));
} else {
groups.push(FusionGroup {
first_col: col,
options,
calls: vec![(col, call.clone())],
});
}
}
// No fusion to do on groups of 1.
groups.retain(|g| g.calls.len() > 1);
let removals: BTreeSet<usize> = groups
.iter()
.flat_map(|g| g.calls.iter().map(|(col, _)| *col))
.collect();
// Mutate `scalars`.
// We do this by simultaneously iterating through `scalars` and `groups`. (Note that
// `groups` is already sorted by `first_col` due to the way it was constructed.)
// We also compute a remapping of old indexes to new indexes as we go.
let mut groups_it = groups.drain(..).peekable();
let mut group = groups_it.next();
let mut remap = BTreeMap::new();
remap.extend((0..arity_before_map).map(|col| (col, col)));
let mut new_col: usize = arity_before_map;
let mut new_scalars = Vec::new();
for (old_col, e) in scalars
.drain(..)
.enumerate()
.map(|(idx, e)| (idx + arity_before_map, e))
{
if group.as_ref().is_some_and(|g| g.first_col == old_col) {
// The current expression will be fused away, and a fused expression will
// appear in its place. Additionally, some new expressions will be inserted
// after the fused expression, to decompose the record that is the result of
// the fused call.
assert!(removals.contains(&old_col));
let group_unwrapped = group.expect("checked above");
let calls_cols = group_unwrapped
.calls
.iter()
.map(|(col, _call)| *col)
.collect_vec();
let (fused, decompositions) = group_unwrapped.fuse(new_col);
new_scalars.push(fused.remap(&remap));
new_scalars.extend(decompositions); // (no remapping needed)
new_col += 1;
for call_old_col in calls_cols {
let present = remap.insert(call_old_col, new_col);
assert!(present.is_none());
new_col += 1;
}
group = groups_it.next();
} else if removals.contains(&old_col) {
assert!(remap.contains_key(&old_col));
} else {
new_scalars.push(e.remap(&remap));
let present = remap.insert(old_col, new_col);
assert!(present.is_none());
new_col += 1;
}
}
*scalars = new_scalars;
assert_eq!(remap.len(), arity_before_map + orig_num_scalars);
// Add a project to permute columns back to their original places.
*rel_expr = rel_expr.take().project(
(0..arity_before_map)
.chain((0..orig_num_scalars).map(|idx| {
*remap
.get(&(idx + arity_before_map))
.expect("all columns should be present by now")
}))
.collect(),
);
assert_eq!(rel_expr.arity(), arity_before_map + orig_num_scalars);
}
_ => {}
}
Ok(())
})
}