1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
// Copyright Materialize, Inc. and contributors. All rights reserved.
//
// Use of this software is governed by the Business Source License
// included in the LICENSE file.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0.
//! An explicit representation of a rendering plan for provided dataflows.
#![warn(missing_debug_implementations)]
use std::collections::{BTreeMap, BTreeSet};
use proptest::arbitrary::Arbitrary;
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest_derive::Arbitrary;
use serde::{Deserialize, Serialize};
use mz_expr::JoinImplementation::{DeltaQuery, Differential, IndexedFilter, Unimplemented};
use mz_expr::{
permutation_for_arrangement, CollectionPlan, EvalError, Id, JoinInputMapper, LocalId,
MapFilterProject, MirRelationExpr, MirScalarExpr, OptimizedMirRelationExpr, TableFunc,
};
use mz_ore::soft_panic_or_log;
use mz_proto::{IntoRustIfSome, ProtoType, RustType, TryFromProtoError};
use mz_repr::{Diff, GlobalId, Row};
use crate::plan::join::{DeltaJoinPlan, JoinPlan, LinearJoinPlan};
use crate::plan::reduce::{KeyValPlan, ReducePlan};
use crate::plan::threshold::ThresholdPlan;
use crate::plan::top_k::TopKPlan;
use crate::types::dataflows::{BuildDesc, DataflowDescription};
pub mod join;
pub mod reduce;
pub mod threshold;
pub mod top_k;
include!(concat!(env!("OUT_DIR"), "/mz_compute_client.plan.rs"));
/// The forms in which an operator's output is available;
/// it can be considered the plan-time equivalent of
/// `render::context::CollectionBundle`.
///
/// These forms are either "raw", representing an unarranged collection,
/// or "arranged", representing one that has been arranged by some key.
///
/// The raw collection, if it exists, may be consumed directly.
///
/// The arranged collections are slightly more complicated:
/// Each key here is attached to a description of how the corresponding
/// arrangement is permuted to remove value columns
/// that are redundant with key columns. Thus, the first element in each
/// tuple of `arranged` is the arrangement key; the second is the map of
/// logical output columns to columns in the key or value of the deduplicated
/// representation, and the third is a "thinning expression",
/// or list of columns to include in the value
/// when arranging.
///
/// For example, assume a 5-column collection is to be arranged by the key
/// `[Column(2), Column(0) + Column(3), Column(1)]`.
/// Then `Column(1)` and `Column(2)` in the value are redundant with the key, and
/// only columns 0, 3, and 4 need to be stored separately.
/// The thinning expression will then be `[0, 3, 4]`.
///
/// The permutation represents how to recover the
/// original values (logically `[Column(0), Column(1), Column(2), Column(3), Column(4)]`)
/// from the key and value of the arrangement, logically
/// `[Column(2), Column(0) + Column(3), Column(1), Column(0), Column(3), Column(4)]`.
/// Thus, the permutation in this case should be `{0: 3, 1: 2, 2: 0, 3: 4, 4: 5}`.
///
/// Note that this description, while true at the time of writing, is merely illustrative;
/// users of this struct should not rely on the exact strategy used for generating
/// the permutations. As long as clients apply the thinning expression
/// when creating arrangements, and permute by the hashmap when reading them,
/// the contract of the function where they are generated (`mz_expr::permutation_for_arrangement`)
/// ensures that the correct values will be read.
#[derive(Arbitrary, Default, Clone, Debug, Deserialize, Serialize, PartialEq, Eq)]
pub struct AvailableCollections {
/// Whether the collection exists in unarranged form.
pub raw: bool,
/// The set of arrangements of the collection, along with a
/// column permutation mapping
#[proptest(strategy = "prop::collection::vec(any_arranged_thin(), 0..3)")]
pub arranged: Vec<(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)>,
}
/// A strategy that produces arrangements that are thinner than the default. That is
/// the number of direct children is limited to a maximum of 3.
pub(crate) fn any_arranged_thin(
) -> impl Strategy<Value = (Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)> {
(
prop::collection::vec(MirScalarExpr::arbitrary(), 0..3),
BTreeMap::<usize, usize>::arbitrary(),
Vec::<usize>::arbitrary(),
)
}
impl RustType<ProtoAvailableCollections> for AvailableCollections {
fn into_proto(&self) -> ProtoAvailableCollections {
ProtoAvailableCollections {
raw: self.raw,
arranged: self.arranged.into_proto(),
}
}
fn from_proto(x: ProtoAvailableCollections) -> Result<Self, TryFromProtoError> {
Ok({
Self {
raw: x.raw,
arranged: x.arranged.into_rust()?,
}
})
}
}
impl AvailableCollections {
/// Represent a collection that has no arrangements.
pub fn new_raw() -> Self {
Self {
raw: true,
arranged: Vec::new(),
}
}
/// Represent a collection that is arranged in the
/// specified ways.
pub fn new_arranged(
arranged: Vec<(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)>,
) -> Self {
assert!(
!arranged.is_empty(),
"Invariant violated: at least one collection must exist"
);
Self {
raw: false,
arranged,
}
}
/// Get some arrangement, if one exists.
pub fn arbitrary_arrangement(
&self,
) -> Option<&(Vec<MirScalarExpr>, BTreeMap<usize, usize>, Vec<usize>)> {
assert!(
self.raw || !self.arranged.is_empty(),
"Invariant violated: at least one collection must exist"
);
self.arranged.get(0)
}
}
/// A rendering plan with as much conditional logic as possible removed.
#[derive(Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
pub enum Plan<T = mz_repr::Timestamp> {
/// A collection containing a pre-determined collection.
Constant {
/// Explicit update triples for the collection.
rows: Result<Vec<(Row, T, Diff)>, EvalError>,
},
/// A reference to a bound collection.
///
/// This is commonly either an external reference to an existing source or
/// maintained arrangement, or an internal reference to a `Let` identifier.
Get {
/// A global or local identifier naming the collection.
id: Id,
/// Arrangements that will be available.
///
/// The collection will also be loaded if available, which it will
/// not be for imported data, but which it may be for locally defined
/// data.
// TODO: Be more explicit about whether a collection is available,
// although one can always produce it from an arrangement, and it
// seems generally advantageous to do that instead (to avoid cloning
// rows, by using `mfp` first on borrowed data).
keys: AvailableCollections,
/// The actions to take when introducing the collection.
plan: GetPlan,
},
/// Binds `value` to `id`, and then results in `body` with that binding.
///
/// This stage has the effect of sharing `value` across multiple possible
/// uses in `body`, and is the only mechanism we have for sharing collection
/// information across parts of a dataflow.
///
/// The binding is not available outside of `body`.
Let {
/// The local identifier to be used, available to `body` as `Id::Local(id)`.
id: LocalId,
/// The collection that should be bound to `id`.
value: Box<Plan<T>>,
/// The collection that results, which is allowed to contain `Get` stages
/// that reference `Id::Local(id)`.
body: Box<Plan<T>>,
},
/// Binds `values` to `ids`, evaluates them potentially recursively, and returns `body`.
///
/// All bindings are available to all bindings, and to `body`.
/// The contents of each binding are initially empty, and then updated through a sequence
/// of iterations in which each binding is updated in sequence, from the most recent values
/// of all bindings.
LetRec {
/// The local identifiers to be used, available to `body` as `Id::Local(id)`.
ids: Vec<LocalId>,
/// The collection that should be bound to `id`.
values: Vec<Plan<T>>,
/// The collection that results, which is allowed to contain `Get` stages
/// that reference `Id::Local(id)`.
body: Box<Plan<T>>,
},
/// Map, Filter, and Project operators.
///
/// This stage contains work that we would ideally like to fuse to other plan
/// stages, but for practical reasons cannot. For example: reduce, threshold,
/// and topk stages are not able to absorb this operator.
Mfp {
/// The input collection.
input: Box<Plan<T>>,
/// Linear operator to apply to each record.
mfp: MapFilterProject,
/// Whether the input is from an arrangement, and if so,
/// whether we can seek to a specific value therein
input_key_val: Option<(Vec<MirScalarExpr>, Option<Row>)>,
},
/// A variable number of output records for each input record.
///
/// This stage is a bit of a catch-all for logic that does not easily fit in
/// map stages. This includes table valued functions, but also functions of
/// multiple arguments, and functions that modify the sign of updates.
///
/// This stage allows a `MapFilterProject` operator to be fused to its output,
/// and this can be very important as otherwise the output of `func` is just
/// appended to the input record, for as many outputs as it has. This has the
/// unpleasant default behavior of repeating potentially large records that
/// are being unpacked, producing quadratic output in those cases. Instead,
/// in these cases use a `mfp` member that projects away these large fields.
FlatMap {
/// The input collection.
input: Box<Plan<T>>,
/// The variable-record emitting function.
func: TableFunc,
/// Expressions that for each row prepare the arguments to `func`.
exprs: Vec<MirScalarExpr>,
/// Linear operator to apply to each record produced by `func`.
mfp: MapFilterProject,
/// The particular arrangement of the input we expect to use,
/// if any
input_key: Option<Vec<MirScalarExpr>>,
},
/// A multiway relational equijoin, with fused map, filter, and projection.
///
/// This stage performs a multiway join among `inputs`, using the equality
/// constraints expressed in `plan`. The plan also describes the implementation
/// strategy we will use, and any pushed down per-record work.
Join {
/// An ordered list of inputs that will be joined.
inputs: Vec<Plan<T>>,
/// Detailed information about the implementation of the join.
///
/// This includes information about the implementation strategy, but also
/// any map, filter, project work that we might follow the join with, but
/// potentially pushed down into the implementation of the join.
plan: JoinPlan,
},
/// Aggregation by key.
Reduce {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for changing input records into key, value pairs.
key_val_plan: KeyValPlan,
/// A plan for performing the reduce.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
plan: ReducePlan,
/// The particular arrangement of the input we expect to use,
/// if any
input_key: Option<Vec<MirScalarExpr>>,
},
/// Key-based "Top K" operator, retaining the first K records in each group.
TopK {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for performing the Top-K.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
top_k_plan: TopKPlan,
},
/// Inverts the sign of each update.
Negate {
/// The input collection.
input: Box<Plan<T>>,
},
/// Filters records that accumulate negatively.
///
/// Although the operator suppresses updates, it is a stateful operator taking
/// resources proportional to the number of records with non-zero accumulation.
Threshold {
/// The input collection.
input: Box<Plan<T>>,
/// A plan for performing the threshold.
///
/// The implementation of reduction has several different strategies based
/// on the properties of the reduction, and the input itself. Please check
/// out the documentation for this type for more detail.
threshold_plan: ThresholdPlan,
},
/// Adds the contents of the input collections.
///
/// Importantly, this is *multiset* union, so the multiplicities of records will
/// add. This is in contrast to *set* union, where the multiplicities would be
/// capped at one. A set union can be formed with `Union` followed by `Reduce`
/// implementing the "distinct" operator.
Union {
/// The input collections
inputs: Vec<Plan<T>>,
},
/// The `input` plan, but with additional arrangements.
///
/// This operator does not change the logical contents of `input`, but ensures
/// that certain arrangements are available in the results. This operator can
/// be important for e.g. the `Join` stage which benefits from multiple arrangements
/// or to cap a `Plan` so that indexes can be exported.
ArrangeBy {
/// The input collection.
input: Box<Plan<T>>,
/// A list of arrangement keys, and possibly a raw collection,
/// that will be added to those of the input.
///
/// If any of these collection forms are already present in the input, they have no effect.
forms: AvailableCollections,
/// The key that must be used to access the input.
input_key: Option<Vec<MirScalarExpr>>,
/// The MFP that must be applied to the input.
input_mfp: MapFilterProject,
},
}
impl<T> Plan<T> {
/// Iterates through mutable references to child expressions.
pub fn children_mut(&mut self) -> impl Iterator<Item = &mut Self> {
let mut first = None;
let mut second = None;
let mut rest = None;
let mut last = None;
use Plan::*;
match self {
Constant { .. } | Get { .. } => (),
Let { value, body, .. } => {
first = Some(&mut **value);
second = Some(&mut **body);
}
LetRec { values, body, .. } => {
rest = Some(values);
last = Some(&mut **body);
}
Mfp { input, .. }
| FlatMap { input, .. }
| Reduce { input, .. }
| TopK { input, .. }
| Negate { input }
| Threshold { input, .. }
| ArrangeBy { input, .. } => {
first = Some(&mut **input);
}
Join { inputs, .. } | Union { inputs } => {
rest = Some(inputs);
}
}
first
.into_iter()
.chain(second)
.chain(rest.into_iter().flatten())
.chain(last)
}
}
impl Arbitrary for Plan {
type Strategy = BoxedStrategy<Plan>;
type Parameters = ();
fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {
let row_diff = prop::collection::vec(
(
Row::arbitrary_with((1..5).into()),
mz_repr::Timestamp::arbitrary(),
Diff::arbitrary(),
),
0..2,
);
let constant = prop::result::maybe_ok(row_diff, EvalError::arbitrary())
.prop_map(|rows| Plan::Constant { rows });
let get = (any::<Id>(), any::<AvailableCollections>(), any::<GetPlan>())
.prop_map(|(id, keys, plan)| Plan::<mz_repr::Timestamp>::Get { id, keys, plan });
let leaf = prop::strategy::Union::new(vec![constant.boxed(), get.boxed()]).boxed();
leaf.prop_recursive(2, 4, 5, |inner| {
prop::strategy::Union::new(vec![
//Plan::Let
(any::<LocalId>(), inner.clone(), inner.clone())
.prop_map(|(id, value, body)| Plan::Let {
id,
value: value.into(),
body: body.into(),
})
.boxed(),
//Plan::Mfp
(
inner.clone(),
any::<MapFilterProject>(),
any::<Option<(Vec<MirScalarExpr>, Option<Row>)>>(),
)
.prop_map(|(input, mfp, input_key_val)| Plan::Mfp {
input: input.into(),
mfp,
input_key_val,
})
.boxed(),
//Plan::FlatMap
(
inner.clone(),
any::<TableFunc>(),
any::<Vec<MirScalarExpr>>(),
any::<MapFilterProject>(),
any::<Option<Vec<MirScalarExpr>>>(),
)
.prop_map(|(input, func, exprs, mfp, input_key)| Plan::FlatMap {
input: input.into(),
func,
exprs,
mfp,
input_key,
})
.boxed(),
//Plan::Join
(
prop::collection::vec(inner.clone(), 0..2),
any::<JoinPlan>(),
)
.prop_map(|(inputs, plan)| Plan::Join { inputs, plan })
.boxed(),
//Plan::Reduce
(
inner.clone(),
any::<KeyValPlan>(),
any::<ReducePlan>(),
any::<Option<Vec<MirScalarExpr>>>(),
)
.prop_map(|(input, key_val_plan, plan, input_key)| Plan::Reduce {
input: input.into(),
key_val_plan,
plan,
input_key,
})
.boxed(),
//Plan::TopK
(inner.clone(), any::<TopKPlan>())
.prop_map(|(input, top_k_plan)| Plan::TopK {
input: input.into(),
top_k_plan,
})
.boxed(),
//Plan::Negate
inner
.clone()
.prop_map(|x| Plan::Negate { input: x.into() })
.boxed(),
//Plan::Threshold
(inner.clone(), any::<ThresholdPlan>())
.prop_map(|(input, threshold_plan)| Plan::Threshold {
input: input.into(),
threshold_plan,
})
.boxed(),
// Plan::Union
prop::collection::vec(inner.clone(), 0..2)
.prop_map(|x| Plan::Union { inputs: x })
.boxed(),
//Plan::ArrangeBy
(
inner,
any::<AvailableCollections>(),
any::<Option<Vec<MirScalarExpr>>>(),
any::<MapFilterProject>(),
)
.prop_map(|(input, forms, input_key, input_mfp)| Plan::ArrangeBy {
input: input.into(),
forms,
input_key,
input_mfp,
})
.boxed(),
])
})
.boxed()
}
}
impl RustType<proto_plan::ProtoPlanConstant>
for Result<Vec<(Row, mz_repr::Timestamp, i64)>, EvalError>
{
fn into_proto(&self) -> proto_plan::ProtoPlanConstant {
use proto_plan::proto_plan_constant::Result;
proto_plan::ProtoPlanConstant {
result: Some(match self {
Ok(rows) => Result::Rows(rows.into_proto()),
Err(err) => Result::Err(err.into_proto()),
}),
}
}
fn from_proto(proto: proto_plan::ProtoPlanConstant) -> Result<Self, TryFromProtoError> {
use proto_plan::proto_plan_constant::Result;
match proto.result {
Some(Result::Rows(rows)) => Ok(Ok(rows.into_rust()?)),
Some(Result::Err(err)) => Ok(Err(err.into_rust()?)),
None => Err(TryFromProtoError::missing_field(
"ProtoPlanConstant::result",
)),
}
}
}
impl RustType<ProtoPlan> for Plan {
fn into_proto(&self) -> ProtoPlan {
use proto_plan::Kind::*;
use proto_plan::*;
fn input_kv_into(
x: &Option<(Vec<MirScalarExpr>, Option<Row>)>,
) -> Option<ProtoPlanInputKeyVal> {
x.as_ref().map(|(key, val)| ProtoPlanInputKeyVal {
key: key.into_proto(),
val: val.into_proto(),
})
}
fn input_k_into(
input_key: Option<&Vec<MirScalarExpr>>,
) -> Option<proto_plan::ProtoPlanInputKey> {
input_key.map(|vec| ProtoPlanInputKey {
key: vec.into_proto(),
})
}
ProtoPlan {
kind: Some(match self {
Plan::Constant { rows } => Constant(rows.into_proto()),
Plan::Get { id, keys, plan } => Get(ProtoPlanGet {
id: Some(id.into_proto()),
keys: Some(keys.into_proto()),
plan: Some(plan.into_proto()),
}),
Plan::Let { id, value, body } => Let(ProtoPlanLet {
id: Some(id.into_proto()),
value: Some(value.into_proto()),
body: Some(body.into_proto()),
}
.into()),
Plan::LetRec { ids, values, body } => LetRec(
ProtoPlanLetRec {
ids: ids.into_proto(),
values: values.into_proto(),
body: Some(body.into_proto()),
}
.into(),
),
Plan::Mfp {
input,
mfp,
input_key_val,
} => Mfp(ProtoPlanMfp {
input: Some(input.into_proto()),
mfp: Some(mfp.into_proto()),
input_key_val: input_kv_into(input_key_val),
}
.into()),
Plan::FlatMap {
input,
func,
exprs,
mfp,
input_key,
} => FlatMap(
ProtoPlanFlatMap {
input: Some(input.into_proto()),
func: Some(func.into_proto()),
exprs: exprs.into_proto(),
mfp: Some(mfp.into_proto()),
input_key: input_k_into(input_key.as_ref()),
}
.into(),
),
Plan::Join { inputs, plan } => Join(ProtoPlanJoin {
inputs: inputs.into_proto(),
plan: Some(plan.into_proto()),
}),
Plan::Reduce {
input,
key_val_plan,
plan,
input_key,
} => Reduce(
ProtoPlanReduce {
input: Some(input.into_proto()),
key_val_plan: Some(key_val_plan.into_proto()),
plan: Some(plan.into_proto()),
input_key: input_k_into(input_key.as_ref()),
}
.into(),
),
Plan::TopK { input, top_k_plan } => TopK(
ProtoPlanTopK {
input: Some(input.into_proto()),
top_k_plan: Some(top_k_plan.into_proto()),
}
.into(),
),
Plan::Negate { input } => Negate(input.into_proto()),
Plan::Threshold {
input,
threshold_plan,
} => Threshold(
ProtoPlanThreshold {
input: Some(input.into_proto()),
threshold_plan: Some(threshold_plan.into_proto()),
}
.into(),
),
Plan::Union { inputs } => Union(ProtoPlanUnion {
inputs: inputs.into_proto(),
}),
Plan::ArrangeBy {
input,
forms,
input_key,
input_mfp,
} => ArrangeBy(
ProtoPlanArrangeBy {
input: Some(input.into_proto()),
forms: Some(forms.into_proto()),
input_key: input_k_into(input_key.as_ref()),
input_mfp: Some(input_mfp.into_proto()),
}
.into(),
),
}),
}
}
fn from_proto(proto: ProtoPlan) -> Result<Self, TryFromProtoError> {
use proto_plan::Kind::*;
use proto_plan::*;
fn input_k_try_into(
input_key: Option<ProtoPlanInputKey>,
) -> Result<Option<Vec<MirScalarExpr>>, TryFromProtoError> {
Ok(match input_key {
Some(proto_plan::ProtoPlanInputKey { key }) => Some(key.into_rust()?),
None => None,
})
}
fn input_kv_try_into(
input_key_val: Option<ProtoPlanInputKeyVal>,
) -> Result<Option<(Vec<MirScalarExpr>, Option<Row>)>, TryFromProtoError> {
Ok(match input_key_val {
Some(inner) => Some((inner.key.into_rust()?, inner.val.into_rust()?)),
None => None,
})
}
let kind = proto
.kind
.ok_or_else(|| TryFromProtoError::missing_field("ProtoPlan::kind"))?;
Ok(match kind {
Constant(ProtoPlanConstant { result }) => {
let result = result
.ok_or_else(|| TryFromProtoError::missing_field("ProtoPlanConstant::result"))?;
Plan::Constant {
rows: match result {
proto_plan_constant::Result::Rows(rows) => Ok(rows.into_rust()?),
proto_plan_constant::Result::Err(eval_err) => Err(eval_err.into_rust()?),
},
}
}
Get(proto) => Plan::Get {
id: proto.id.into_rust_if_some("ProtoPlanGet::id")?,
keys: proto.keys.into_rust_if_some("ProtoPlanGet::keys")?,
plan: proto.plan.into_rust_if_some("ProtoPlanGet::plan")?,
},
Let(proto) => Plan::Let {
id: proto.id.into_rust_if_some("ProtoPlanLet::id")?,
value: proto.value.into_rust_if_some("ProtoPlanLet::value")?,
body: proto.body.into_rust_if_some("ProtoPlanLet::body")?,
},
LetRec(proto) => Plan::LetRec {
ids: proto.ids.into_rust()?,
values: proto.values.into_rust()?,
body: proto.body.into_rust_if_some("ProtoPlanLetRec::body")?,
},
Mfp(proto) => Plan::Mfp {
input: proto.input.into_rust_if_some("ProtoPlanMfp::input")?,
input_key_val: input_kv_try_into(proto.input_key_val)?,
mfp: proto.mfp.into_rust_if_some("ProtoPlanMfp::mfp")?,
},
FlatMap(proto) => Plan::FlatMap {
input: proto.input.into_rust_if_some("ProtoPlanFlatMap::input")?,
func: proto.func.into_rust_if_some("ProtoPlanFlatMap::func")?,
exprs: proto.exprs.into_rust()?,
mfp: proto.mfp.into_rust_if_some("ProtoPlanFlatMap::mfp")?,
input_key: input_k_try_into(proto.input_key)?,
},
Join(proto) => Plan::Join {
inputs: proto.inputs.into_rust()?,
plan: proto.plan.into_rust_if_some("")?,
},
Reduce(proto) => Plan::Reduce {
input: proto.input.into_rust_if_some("ProtoPlanReduce::input")?,
key_val_plan: proto
.key_val_plan
.into_rust_if_some("ProtoPlanReduce::key_val_plan")?,
plan: proto.plan.into_rust_if_some("ProtoPlanReduce::plan")?,
input_key: input_k_try_into(proto.input_key)?,
},
TopK(proto) => Plan::TopK {
input: proto.input.into_rust_if_some("ProtoPlanTopK::input")?,
top_k_plan: proto
.top_k_plan
.into_rust_if_some("ProtoPlanTopK::top_k_plan")?,
},
Negate(proto) => Plan::Negate {
input: proto.into_rust()?,
},
Threshold(proto) => Plan::Threshold {
input: proto.input.into_rust_if_some("ProtoPlanThreshold::input")?,
threshold_plan: proto
.threshold_plan
.into_rust_if_some("ProtoPlanThreshold::threshold_plan")?,
},
Union(proto) => Plan::Union {
inputs: proto.inputs.into_rust()?,
},
ArrangeBy(proto) => Plan::ArrangeBy {
input: proto.input.into_rust_if_some("ProtoPlanArrangeBy::input")?,
forms: proto.forms.into_rust_if_some("ProtoPlanArrangeBy::forms")?,
input_key: input_k_try_into(proto.input_key)?,
input_mfp: proto
.input_mfp
.into_rust_if_some("ProtoPlanArrangeBy::input_mfp")?,
},
})
}
}
impl RustType<proto_plan::ProtoRowDiff> for (Row, mz_repr::Timestamp, i64) {
fn into_proto(&self) -> proto_plan::ProtoRowDiff {
proto_plan::ProtoRowDiff {
row: Some(self.0.into_proto()),
timestamp: self.1.into(),
diff: self.2.clone(),
}
}
fn from_proto(proto: proto_plan::ProtoRowDiff) -> Result<Self, TryFromProtoError> {
Ok((
proto.row.into_rust_if_some("ProtoRowDiff::row")?,
proto.timestamp.into(),
proto.diff,
))
}
}
impl RustType<proto_plan::ProtoRowDiffVec> for Vec<(Row, mz_repr::Timestamp, i64)> {
fn into_proto(&self) -> proto_plan::ProtoRowDiffVec {
proto_plan::ProtoRowDiffVec {
rows: self.into_proto(),
}
}
fn from_proto(proto: proto_plan::ProtoRowDiffVec) -> Result<Self, TryFromProtoError> {
proto.rows.into_rust()
}
}
/// How a `Get` stage will be rendered.
#[derive(Arbitrary, Clone, Debug, Serialize, Deserialize, Eq, PartialEq)]
pub enum GetPlan {
/// Simply pass input arrangements on to the next stage.
PassArrangements,
/// Using the supplied key, optionally seek the row, and apply the MFP.
Arrangement(
#[proptest(strategy = "prop::collection::vec(MirScalarExpr::arbitrary(), 0..3)")]
Vec<MirScalarExpr>,
Option<Row>,
MapFilterProject,
),
/// Scan the input collection (unarranged) and apply the MFP.
Collection(MapFilterProject),
}
impl RustType<ProtoGetPlan> for GetPlan {
fn into_proto(&self) -> ProtoGetPlan {
use proto_get_plan::Kind::*;
ProtoGetPlan {
kind: Some(match self {
GetPlan::PassArrangements => PassArrangements(()),
GetPlan::Arrangement(k, s, m) => {
Arrangement(proto_get_plan::ProtoGetPlanArrangement {
key: k.into_proto(),
seek: s.into_proto(),
mfp: Some(m.into_proto()),
})
}
GetPlan::Collection(mfp) => Collection(mfp.into_proto()),
}),
}
}
fn from_proto(proto: ProtoGetPlan) -> Result<Self, TryFromProtoError> {
use proto_get_plan::Kind::*;
use proto_get_plan::ProtoGetPlanArrangement;
match proto.kind {
Some(PassArrangements(())) => Ok(GetPlan::PassArrangements),
Some(Arrangement(ProtoGetPlanArrangement { key, seek, mfp })) => {
Ok(GetPlan::Arrangement(
key.into_rust()?,
seek.into_rust()?,
mfp.into_rust_if_some("ProtoGetPlanArrangement::mfp")?,
))
}
Some(Collection(mfp)) => Ok(GetPlan::Collection(mfp.into_rust()?)),
None => Err(TryFromProtoError::missing_field("ProtoGetPlan::kind")),
}
}
}
/// Various bits of state to print along with error messages during LIR planning,
/// to aid debugging.
#[derive(Copy, Clone, Debug)]
pub struct LirDebugInfo<'a> {
debug_name: &'a str,
id: GlobalId,
}
impl<'a> std::fmt::Display for LirDebugInfo<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Debug name: {}; id: {}", self.debug_name, self.id)
}
}
impl<T: timely::progress::Timestamp> Plan<T> {
/// Replace the plan with another one
/// that has the collection in some additional forms.
pub fn arrange_by(
self,
collections: AvailableCollections,
old_collections: &AvailableCollections,
arity: usize,
) -> Self {
let new_self = if let Self::ArrangeBy {
input,
mut forms,
input_key,
input_mfp,
} = self
{
forms.raw |= collections.raw;
forms.arranged.extend(collections.arranged.into_iter());
forms.arranged.sort_by(|k1, k2| k1.0.cmp(&k2.0));
forms.arranged.dedup_by(|k1, k2| k1.0 == k2.0);
Self::ArrangeBy {
input,
forms,
input_key,
input_mfp,
}
} else {
let (input_key, input_mfp) = if let Some((input_key, permutation, thinning)) =
old_collections.arbitrary_arrangement()
{
let mut mfp = MapFilterProject::new(arity);
mfp.permute(permutation.clone(), thinning.len() + input_key.len());
(Some(input_key.clone()), mfp)
} else {
(None, MapFilterProject::new(arity))
};
Self::ArrangeBy {
input: Box::new(self),
forms: collections,
input_key,
input_mfp,
}
};
new_self
}
/// This method converts a MirRelationExpr into a plan that can be directly rendered.
///
/// The rough structure is that we repeatedly extract map/filter/project operators
/// from each expression we see, bundle them up as a `MapFilterProject` object, and
/// then produce a plan for the combination of that with the next operator.
///
/// The method takes as an argument the existing arrangements for each bound identifier,
/// which it will locally add to and remove from for `Let` bindings (by the end of the
/// call it should contain the same bindings as when it started).
///
/// The result of the method is both a `Plan`, but also a list of arrangements that
/// are certain to be produced, which can be relied on by the next steps in the plan.
/// Each of the arrangement keys is associated with an MFP that must be applied if that arrangement is used,
/// to back out the permutation associated with that arrangement.
/// An empty list of arrangement keys indicates that only a `Collection` stream can
/// be assumed to exist.
pub fn from_mir(
expr: &MirRelationExpr,
arrangements: &mut BTreeMap<Id, AvailableCollections>,
debug_info: LirDebugInfo<'_>,
) -> Result<(Self, AvailableCollections), String> {
// We don't want to trace recursive calls, which is why the public `from_mir`
// is annotated and delegates the work to a private (recursive) from_mir_inner.
Plan::from_mir_inner(expr, arrangements, debug_info)
}
fn from_mir_inner(
expr: &MirRelationExpr,
arrangements: &mut BTreeMap<Id, AvailableCollections>,
debug_info: LirDebugInfo<'_>,
) -> Result<(Self, AvailableCollections), String> {
// This function is recursive and can overflow its stack, so grow it if
// needed. The growth here is unbounded. Our general solution for this problem
// is to use [`ore::stack::RecursionGuard`] to additionally limit the stack
// depth. That however requires upstream error handling. This function is
// currently called by the Coordinator after calls to `catalog_transact`,
// and thus are not allowed to fail. Until that allows errors, we choose
// to allow the unbounded growth here. We are though somewhat protected by
// higher levels enforcing their own limits on stack depth (in the parser,
// transformer/desugarer, and planner).
mz_ore::stack::maybe_grow(|| Plan::from_mir_stack_safe(expr, arrangements, debug_info))
}
fn from_mir_stack_safe(
expr: &MirRelationExpr,
arrangements: &mut BTreeMap<Id, AvailableCollections>,
debug_info: LirDebugInfo<'_>,
) -> Result<(Self, AvailableCollections), String> {
// Extract a maximally large MapFilterProject from `expr`.
// We will then try and push this in to the resulting expression.
//
// Importantly, `mfp` may contain temporal operators and not be a "safe" MFP.
// While we would eventually like all plan stages to be able to absorb such
// general operators, not all of them can.
let (mut mfp, expr) = MapFilterProject::extract_from_expression(expr);
// We attempt to plan what we have remaining, in the context of `mfp`.
// We may not be able to do this, and must wrap some operators with a `Mfp` stage.
let (mut plan, mut keys) = match expr {
// These operators should have been extracted from the expression.
MirRelationExpr::Map { .. } => {
panic!("This operator should have been extracted");
}
MirRelationExpr::Filter { .. } => {
panic!("This operator should have been extracted");
}
MirRelationExpr::Project { .. } => {
panic!("This operator should have been extracted");
}
// These operators may not have been extracted, and need to result in a `Plan`.
MirRelationExpr::Constant { rows, typ: _ } => {
let plan = Plan::Constant {
rows: rows.clone().map(|rows| {
rows.into_iter()
.map(|(row, diff)| (row, T::minimum(), diff))
.collect()
}),
};
// The plan, not arranged in any way.
(plan, AvailableCollections::new_raw())
}
MirRelationExpr::Get { id, typ: _ } => {
// This stage can absorb arbitrary MFP operators.
let mut mfp = mfp.take();
// If `mfp` is the identity, we can surface all imported arrangements.
// Otherwise, we apply `mfp` and promise no arrangements.
let mut in_keys = arrangements
.get(id)
.cloned()
.unwrap_or_else(AvailableCollections::new_raw);
// Seek out an arrangement key that might be constrained to a literal.
// TODO: Improve key selection heuristic.
// Note that most (actually all, as far as I know) of the cases that used to be
// handled by this code are instead handled by `CanonicalizeMfp`.
let key_val = in_keys
.arranged
.iter()
.filter_map(|key| {
mfp.literal_constraints(&key.0)
.map(|val| (key.clone(), val))
})
.max_by_key(|(key, _val)| key.0.len());
// Determine the plan of action for the `Get` stage.
let plan = if let Some(((key, permutation, thinning), val)) = &key_val {
mfp.permute(permutation.clone(), thinning.len() + key.len());
in_keys.arranged = vec![(key.clone(), permutation.clone(), thinning.clone())];
GetPlan::Arrangement(key.clone(), Some(val.clone()), mfp)
} else if !mfp.is_identity() {
// We need to ensure a collection exists, which means we must form it.
if let Some((key, permutation, thinning)) =
in_keys.arbitrary_arrangement().cloned()
{
mfp.permute(permutation.clone(), thinning.len() + key.len());
in_keys.arranged = vec![(key.clone(), permutation, thinning)];
GetPlan::Arrangement(key, None, mfp)
} else {
GetPlan::Collection(mfp)
}
} else {
// By default, just pass input arrangements through.
GetPlan::PassArrangements
};
let out_keys = if let GetPlan::PassArrangements = plan {
in_keys.clone()
} else {
AvailableCollections::new_raw()
};
// Return the plan, and any keys if an identity `mfp`.
(
Plan::Get {
id: id.clone(),
keys: in_keys,
plan,
},
out_keys,
)
}
MirRelationExpr::Let { id, value, body } => {
// It would be unfortunate to have a non-trivial `mfp` here, as we hope
// that they would be pushed down. I am not sure if we should take the
// initiative to push down the `mfp` ourselves.
// Plan the value using only the initial arrangements, but
// introduce any resulting arrangements bound to `id`.
let (value, v_keys) = Plan::from_mir_inner(value, arrangements, debug_info)?;
let pre_existing = arrangements.insert(Id::Local(*id), v_keys);
assert!(pre_existing.is_none());
// Plan the body using initial and `value` arrangements,
// and then remove reference to the value arrangements.
let (body, b_keys) = Plan::from_mir_inner(body, arrangements, debug_info)?;
arrangements.remove(&Id::Local(*id));
// Return the plan, and any `body` arrangements.
(
Plan::Let {
id: id.clone(),
value: Box::new(value),
body: Box::new(body),
},
b_keys,
)
}
MirRelationExpr::LetRec { ids, values, body } => {
// Plan the values using only the available arrangements, but
// introduce any resulting arrangements bound to each `id`.
// Arrangements made available cannot be used by prior bindings,
// as we cannot circulate an arrangement through a `Variable` yet.
let mut lir_values = Vec::with_capacity(values.len());
for (id, value) in ids.iter().zip(values) {
let (mut lir_value, mut v_keys) =
Plan::from_mir_inner(value, arrangements, debug_info)?;
// If `v_keys` does not contain an unarranged collection, we must form it.
if !v_keys.raw {
// Choose an "arbitrary" arrangement; TODO: prefer a specific one.
let (input_key, permutation, thinning) =
v_keys.arbitrary_arrangement().unwrap();
let mut input_mfp = MapFilterProject::new(value.arity());
input_mfp.permute(permutation.clone(), thinning.len() + input_key.len());
let input_key = Some(input_key.clone());
let forms = AvailableCollections::new_raw();
lir_value = Plan::ArrangeBy {
input: Box::new(lir_value),
forms,
input_key,
input_mfp,
};
v_keys.raw = true;
}
let pre_existing = arrangements.insert(Id::Local(*id), v_keys);
assert!(pre_existing.is_none());
lir_values.push(lir_value);
}
// As we exit the iterative scope, we must leave all arrangements behind,
// as they reference a timestamp coordinate that must be stripped off.
for id in ids.iter() {
arrangements.insert(Id::Local(*id), AvailableCollections::new_raw());
}
// Plan the body using initial and `value` arrangements,
// and then remove reference to the value arrangements.
let (body, b_keys) = Plan::from_mir_inner(body, arrangements, debug_info)?;
for id in ids.iter() {
arrangements.remove(&Id::Local(*id));
}
// Return the plan, and any `body` arrangements.
(
Plan::LetRec {
ids: ids.clone(),
values: lir_values,
body: Box::new(body),
},
b_keys,
)
}
MirRelationExpr::FlatMap { input, func, exprs } => {
let (input, keys) = Plan::from_mir_inner(input, arrangements, debug_info)?;
// This stage can absorb arbitrary MFP instances.
let mfp = mfp.take();
let mut exprs = exprs.clone();
let input_key = if let Some((k, permutation, _)) = keys.arbitrary_arrangement() {
// We don't permute the MFP here, because it runs _after_ the table function,
// whose output is in a fixed order.
//
// We _do_, however, need to permute the `expr`s that provide input to the
// `func`.
for expr in &mut exprs {
expr.permute_map(permutation);
}
Some(k.clone())
} else {
None
};
// Return the plan, and no arrangements.
(
Plan::FlatMap {
input: Box::new(input),
func: func.clone(),
exprs: exprs.clone(),
mfp,
input_key,
},
AvailableCollections::new_raw(),
)
}
MirRelationExpr::Join {
inputs,
equivalences,
implementation,
} => {
let input_mapper = JoinInputMapper::new(inputs);
// Plan each of the join inputs independently.
// The `plans` get surfaced upwards, and the `input_keys` should
// be used as part of join planning / to validate the existing
// plans / to aid in indexed seeding of update streams.
let mut plans = Vec::new();
let mut input_keys = Vec::new();
let mut input_arities = Vec::new();
for input in inputs.iter() {
let (plan, keys) = Plan::from_mir_inner(input, arrangements, debug_info)?;
input_arities.push(input.arity());
plans.push(plan);
input_keys.push(keys);
}
// Extract temporal predicates as joins cannot currently absorb them.
let (plan, missing) = match implementation {
IndexedFilter(_id, key, _val) => {
// Start with the constant input. (This used to be important before #14059
// was fixed.)
let start: usize = 1;
let order = vec![(0usize, key.clone(), None)];
// All columns of the constant input will be part of the arrangement key.
// Note that currently nothing else would make this arrangement exist, so
// this will end up in `missing`, and thus we'll insert an LIR ArrangeBy
// later.
let source_arrangement = (
(0..key.len())
.map(MirScalarExpr::Column)
.collect::<Vec<_>>(),
(0..key.len()).map(|i| (i, i)).collect::<BTreeMap<_, _>>(),
Vec::<usize>::new(),
);
let (ljp, missing) = LinearJoinPlan::create_from(
start,
Some(&source_arrangement),
equivalences,
&order,
input_mapper,
&mut mfp,
&input_keys,
);
(JoinPlan::Linear(ljp), missing)
}
Differential((start, start_arr, _start_characteristic), order) => {
let source_arrangement = start_arr.as_ref().and_then(|key| {
input_keys[*start]
.arranged
.iter()
.find(|(k, _, _)| k == key)
.clone()
});
let (ljp, missing) = LinearJoinPlan::create_from(
*start,
source_arrangement,
equivalences,
order,
input_mapper,
&mut mfp,
&input_keys,
);
(JoinPlan::Linear(ljp), missing)
}
DeltaQuery(orders) => {
let (djp, missing) = DeltaJoinPlan::create_from(
equivalences,
orders,
input_mapper,
&mut mfp,
&input_keys,
);
(JoinPlan::Delta(djp), missing)
}
// Other plans are errors, and should be reported as such.
Unimplemented => return Err("unimplemented join".to_string()),
};
// The renderer will expect certain arrangements to exist; if any of those are not available, the join planning functions above should have returned them in
// `missing`. We thus need to plan them here so they'll exist.
let is_delta = matches!(plan, JoinPlan::Delta(_));
for (((input_plan, input_keys), missing), arity) in plans
.iter_mut()
.zip(input_keys.iter())
.zip(missing.into_iter())
.zip(input_arities.iter().cloned())
{
if missing != Default::default() {
if is_delta {
// join_implementation.rs produced a sub-optimal plan here;
// we shouldn't plan delta joins at all if not all of the required arrangements
// are available. Print an error message, to increase the chances that
// the user will tell us about this.
soft_panic_or_log!("Arrangements depended on by delta join alarmingly absent: {:?}
Dataflow info: {}
This is not expected to cause incorrect results, but could indicate a performance issue in Materialize.", missing, debug_info);
} else {
// It's fine and expected that linear joins don't have all their arrangements available up front,
// so no need to print an error here.
}
let raw_plan = std::mem::replace(
input_plan,
Plan::Constant {
rows: Ok(Vec::new()),
},
);
*input_plan = raw_plan.arrange_by(missing, input_keys, arity);
}
}
// Return the plan, and no arrangements.
(
Plan::Join {
inputs: plans,
plan,
},
AvailableCollections::new_raw(),
)
}
MirRelationExpr::Reduce {
input,
group_key,
aggregates,
monotonic,
expected_group_size,
} => {
let input_arity = input.arity();
let output_arity = group_key.len() + aggregates.len();
let (input, keys) = Self::from_mir_inner(input, arrangements, debug_info)?;
let (input_key, permutation_and_new_arity) = if let Some((
input_key,
permutation,
thinning,
)) = keys.arbitrary_arrangement()
{
(
Some(input_key.clone()),
Some((permutation.clone(), thinning.len() + input_key.len())),
)
} else {
(None, None)
};
let key_val_plan = KeyValPlan::new(
input_arity,
group_key,
aggregates,
permutation_and_new_arity,
);
let reduce_plan =
ReducePlan::create_from(aggregates.clone(), *monotonic, *expected_group_size);
let output_keys = reduce_plan.keys(group_key.len(), output_arity);
// Return the plan, and the keys it produces.
(
Plan::Reduce {
input: Box::new(input),
key_val_plan,
plan: reduce_plan,
input_key,
},
output_keys,
)
}
MirRelationExpr::TopK {
input,
group_key,
order_key,
limit,
offset,
monotonic,
} => {
let arity = input.arity();
let (input, keys) = Self::from_mir_inner(input, arrangements, debug_info)?;
let top_k_plan = TopKPlan::create_from(
group_key.clone(),
order_key.clone(),
*offset,
*limit,
arity,
*monotonic,
);
// We don't have an MFP here -- install an operator to permute the
// input, if necessary.
let input = if !keys.raw {
input.arrange_by(AvailableCollections::new_raw(), &keys, arity)
} else {
input
};
// Return the plan, and no arrangements.
(
Plan::TopK {
input: Box::new(input),
top_k_plan,
},
AvailableCollections::new_raw(),
)
}
MirRelationExpr::Negate { input } => {
let arity = input.arity();
let (input, keys) = Self::from_mir_inner(input, arrangements, debug_info)?;
// We don't have an MFP here -- install an operator to permute the
// input, if necessary.
let input = if !keys.raw {
input.arrange_by(AvailableCollections::new_raw(), &keys, arity)
} else {
input
};
// Return the plan, and no arrangements.
(
Plan::Negate {
input: Box::new(input),
},
AvailableCollections::new_raw(),
)
}
MirRelationExpr::Threshold { input } => {
let arity = input.arity();
let (input, keys) = Self::from_mir_inner(input, arrangements, debug_info)?;
// We don't have an MFP here -- install an operator to permute the
// input, if necessary.
let input = if !keys.raw {
input.arrange_by(AvailableCollections::new_raw(), &keys, arity)
} else {
input
};
let (threshold_plan, required_arrangement) =
ThresholdPlan::create_from(arity, false);
let input = if !keys
.arranged
.iter()
.any(|(key, _, _)| key == &required_arrangement.0)
{
input.arrange_by(
AvailableCollections::new_arranged(vec![required_arrangement]),
&keys,
arity,
)
} else {
input
};
let output_keys = threshold_plan.keys();
// Return the plan, and any produced keys.
(
Plan::Threshold {
input: Box::new(input),
threshold_plan,
},
output_keys,
)
}
MirRelationExpr::Union { base, inputs } => {
let arity = base.arity();
let mut plans_keys = Vec::with_capacity(1 + inputs.len());
let (plan, keys) = Self::from_mir_inner(base, arrangements, debug_info)?;
plans_keys.push((plan, keys));
for input in inputs.iter() {
let (plan, keys) = Self::from_mir_inner(input, arrangements, debug_info)?;
plans_keys.push((plan, keys));
}
let plans = plans_keys
.into_iter()
.map(|(plan, keys)| {
// We don't have an MFP here -- install an operator to permute the
// input, if necessary.
if !keys.raw {
plan.arrange_by(AvailableCollections::new_raw(), &keys, arity)
} else {
plan
}
})
.collect();
// Return the plan and no arrangements.
let plan = Plan::Union { inputs: plans };
(plan, AvailableCollections::new_raw())
}
MirRelationExpr::ArrangeBy { input, keys } => {
let arity = input.arity();
let (input, mut input_keys) =
Self::from_mir_inner(input, arrangements, debug_info)?;
// Determine keys that are not present in `input_keys`.
let new_keys = keys
.iter()
.filter(|k1| !input_keys.arranged.iter().any(|(k2, _, _)| k1 == &k2))
.cloned()
.collect::<Vec<_>>();
if new_keys.is_empty() {
(input, input_keys)
} else {
let new_keys = new_keys.iter().cloned().map(|k| {
let (permutation, thinning) = permutation_for_arrangement(&k, arity);
(k, permutation, thinning)
});
let (input_key, input_mfp) = if let Some((input_key, permutation, thinning)) =
input_keys.arbitrary_arrangement()
{
let mut mfp = MapFilterProject::new(arity);
mfp.permute(permutation.clone(), thinning.len() + input_key.len());
(Some(input_key.clone()), mfp)
} else {
(None, MapFilterProject::new(arity))
};
input_keys.arranged.extend(new_keys);
input_keys.arranged.sort_by(|k1, k2| k1.0.cmp(&k2.0));
// Return the plan and extended keys.
(
Plan::ArrangeBy {
input: Box::new(input),
forms: input_keys.clone(),
input_key,
input_mfp,
},
input_keys,
)
}
}
};
// If the plan stage did not absorb all linear operators, introduce a new stage to implement them.
if !mfp.is_identity() {
// Seek out an arrangement key that might be constrained to a literal.
// TODO: Improve key selection heuristic.
let key_val = keys
.arranged
.iter()
.filter_map(|(key, permutation, thinning)| {
let mut mfp = mfp.clone();
mfp.permute(permutation.clone(), thinning.len() + key.len());
mfp.literal_constraints(key)
.map(|val| (key.clone(), permutation, thinning, val))
})
.max_by_key(|(key, _, _, _)| key.len());
// Input key selection strategy:
// (1) If we can read a key at a particular value, do so
// (2) Otherwise, if there is a key that causes the MFP to be the identity, and
// therefore allows us to avoid discarding the arrangement, use that.
// (3) Otherwise, if there is _some_ key, use that,
// (4) Otherwise just read the raw collection.
let input_key_val = if let Some((key, permutation, thinning, val)) = key_val {
mfp.permute(permutation.clone(), thinning.len() + key.len());
Some((key, Some(val)))
} else if let Some((key, permutation, thinning)) =
keys.arranged.iter().find(|(key, permutation, thinning)| {
let mut mfp = mfp.clone();
mfp.permute(permutation.clone(), thinning.len() + key.len());
mfp.is_identity()
})
{
mfp.permute(permutation.clone(), thinning.len() + key.len());
Some((key.clone(), None))
} else if let Some((key, permutation, thinning)) = keys.arbitrary_arrangement() {
mfp.permute(permutation.clone(), thinning.len() + key.len());
Some((key.clone(), None))
} else {
None
};
if mfp.is_identity() {
// We have discovered a key
// whose permutation causes the MFP to actually
// be the identity! We can keep it around,
// but without its permutation this time,
// and with a trivial thinning of the right length.
let (key, val) = input_key_val.unwrap();
let (_old_key, old_permutation, old_thinning) = keys
.arranged
.iter_mut()
.find(|(key2, _, _)| key2 == &key)
.unwrap();
*old_permutation = (0..mfp.input_arity).map(|i| (i, i)).collect();
let old_thinned_arity = old_thinning.len();
*old_thinning = (0..old_thinned_arity).collect();
// Get rid of all other forms, as this is now the only one known to be valid.
// TODO[btv] we can probably save the other arrangements too, if we adjust their permutations.
// This is not hard to do, but leaving it for a quick follow-up to avoid making the present diff too unwieldy.
keys.arranged.retain(|(key2, _, _)| key2 == &key);
keys.raw = false;
// Creating a Plan::Mfp node is now logically unnecessary, but we
// should do so anyway when `val` is populated, so that
// the `key_val` optimization gets applied.
if val.is_some() {
plan = Plan::Mfp {
input: Box::new(plan),
mfp,
input_key_val: Some((key, val)),
}
}
} else {
plan = Plan::Mfp {
input: Box::new(plan),
mfp,
input_key_val,
};
keys = AvailableCollections::new_raw();
}
}
Ok((plan, keys))
}
/// Convert the dataflow description into one that uses render plans.
#[tracing::instrument(
target = "optimizer"
level = "debug",
skip_all,
fields(path.segment = "mir_to_lir")
)]
pub fn finalize_dataflow(
desc: DataflowDescription<OptimizedMirRelationExpr>,
) -> Result<DataflowDescription<Self>, String> {
// Collect available arrangements by identifier.
let mut arrangements = BTreeMap::new();
// Sources might provide arranged forms of their data, in the future.
// Indexes provide arranged forms of their data.
for (index_desc, r#type, _monotonic) in desc.index_imports.values() {
let key = index_desc.key.clone();
// TODO[btv] - We should be told the permutation by
// `index_desc`, and it should have been generated
// at the same point the thinning logic was.
//
// We should for sure do that soon, but it requires
// a bit of a refactor, so for now we just
// _assume_ that they were both generated by `permutation_for_arrangement`,
// and recover it here.
let (permutation, thinning) = permutation_for_arrangement(&key, r#type.arity());
arrangements
.entry(Id::Global(index_desc.on_id))
.or_insert_with(AvailableCollections::default)
.arranged
.push((key, permutation, thinning));
}
for id in desc.source_imports.keys() {
arrangements
.entry(Id::Global(*id))
.or_insert_with(AvailableCollections::new_raw);
}
// Build each object in order, registering the arrangements it forms.
let mut objects_to_build = Vec::with_capacity(desc.objects_to_build.len());
for build in desc.objects_to_build.into_iter() {
let (plan, keys) = Self::from_mir(
&build.plan,
&mut arrangements,
LirDebugInfo {
debug_name: &desc.debug_name,
id: build.id,
},
)?;
arrangements.insert(Id::Global(build.id), keys);
objects_to_build.push(BuildDesc { id: build.id, plan });
}
let mut dataflow = DataflowDescription {
source_imports: desc.source_imports,
index_imports: desc.index_imports,
objects_to_build,
index_exports: desc.index_exports,
sink_exports: desc.sink_exports,
as_of: desc.as_of,
until: desc.until,
debug_name: desc.debug_name,
};
// Extract MFPs from Get operators for sources, and extract what we can for the source.
// For each source, we want to find `&mut MapFilterProject` for each `Get` expression.
for (source_id, (source, _monotonic)) in dataflow.source_imports.iter_mut() {
let mut identity_present = false;
let mut mfps = Vec::new();
for build_desc in dataflow.objects_to_build.iter_mut() {
let mut todo = vec![&mut build_desc.plan];
while let Some(expression) = todo.pop() {
if let Plan::Get { id, plan, .. } = expression {
if *id == mz_expr::Id::Global(*source_id) {
match plan {
GetPlan::Collection(mfp) => mfps.push(mfp),
GetPlan::PassArrangements => {
identity_present = true;
}
GetPlan::Arrangement(..) => {
panic!("Surprising `GetPlan` for imported source: {:?}", plan);
}
}
}
} else {
todo.extend(expression.children_mut());
}
}
}
// Direct exports of sources are possible, and prevent pushdown.
identity_present |= dataflow
.index_exports
.values()
.any(|(x, _)| x.on_id == *source_id);
identity_present |= dataflow.sink_exports.values().any(|x| x.from == *source_id);
if !identity_present && !mfps.is_empty() {
// Extract a common prefix `MapFilterProject` from `mfps`.
let common = MapFilterProject::extract_common(&mut mfps[..]);
// Apply common expressions to the source's `MapFilterProject`.
let mut mfp = if let Some(mfp) = source.arguments.operators.take() {
MapFilterProject::compose(mfp, common)
} else {
common
};
mfp.optimize();
source.arguments.operators = Some(mfp);
}
}
mz_repr::explain::trace_plan(&dataflow);
Ok(dataflow)
}
/// Partitions the plan into `parts` many disjoint pieces.
///
/// This is used to partition `Plan::Constant` stages so that the work
/// can be distributed across many workers.
pub fn partition_among(self, parts: usize) -> Vec<Self> {
if parts == 0 {
Vec::new()
} else if parts == 1 {
vec![self]
} else {
match self {
// For constants, balance the rows across the workers.
Plan::Constant { rows } => match rows {
Ok(rows) => {
let mut rows_parts = vec![Vec::new(); parts];
for (index, row) in rows.into_iter().enumerate() {
rows_parts[index % parts].push(row);
}
rows_parts
.into_iter()
.map(|rows| Plan::Constant { rows: Ok(rows) })
.collect()
}
Err(err) => {
let mut result = vec![
Plan::Constant {
rows: Ok(Vec::new())
};
parts
];
result[0] = Plan::Constant { rows: Err(err) };
result
}
},
// For all other variants, just replace inputs with appropriately sharded versions.
// This is surprisingly verbose, but that is all it is doing.
Plan::Get { id, keys, plan } => vec![Plan::Get { id, keys, plan }; parts],
Plan::Let { value, body, id } => {
let value_parts = value.partition_among(parts);
let body_parts = body.partition_among(parts);
value_parts
.into_iter()
.zip(body_parts)
.map(|(value, body)| Plan::Let {
value: Box::new(value),
body: Box::new(body),
id,
})
.collect()
}
Plan::LetRec { ids, values, body } => {
let mut values_parts: Vec<Vec<Self>> = vec![Vec::new(); parts];
for value in values.into_iter() {
for (index, part) in value.partition_among(parts).into_iter().enumerate() {
values_parts[index].push(part);
}
}
let body_parts = body.partition_among(parts);
values_parts
.into_iter()
.zip(body_parts)
.map(|(values, body)| Plan::LetRec {
values,
body: Box::new(body),
ids: ids.clone(),
})
.collect()
}
Plan::Mfp {
input,
input_key_val,
mfp,
} => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::Mfp {
input: Box::new(input),
mfp: mfp.clone(),
input_key_val: input_key_val.clone(),
})
.collect(),
Plan::FlatMap {
input,
input_key,
func,
exprs,
mfp,
} => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::FlatMap {
input: Box::new(input),
input_key: input_key.clone(),
func: func.clone(),
exprs: exprs.clone(),
mfp: mfp.clone(),
})
.collect(),
Plan::Join { inputs, plan } => {
let mut inputs_parts = vec![Vec::new(); parts];
for input in inputs.into_iter() {
for (index, input_part) in
input.partition_among(parts).into_iter().enumerate()
{
inputs_parts[index].push(input_part);
}
}
inputs_parts
.into_iter()
.map(|inputs| Plan::Join {
inputs,
plan: plan.clone(),
})
.collect()
}
Plan::Reduce {
input,
key_val_plan,
plan,
input_key,
} => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::Reduce {
input: Box::new(input),
input_key: input_key.clone(),
key_val_plan: key_val_plan.clone(),
plan: plan.clone(),
})
.collect(),
Plan::TopK { input, top_k_plan } => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::TopK {
input: Box::new(input),
top_k_plan: top_k_plan.clone(),
})
.collect(),
Plan::Negate { input } => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::Negate {
input: Box::new(input),
})
.collect(),
Plan::Threshold {
input,
threshold_plan,
} => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::Threshold {
input: Box::new(input),
threshold_plan: threshold_plan.clone(),
})
.collect(),
Plan::Union { inputs } => {
let mut inputs_parts = vec![Vec::new(); parts];
for input in inputs.into_iter() {
for (index, input_part) in
input.partition_among(parts).into_iter().enumerate()
{
inputs_parts[index].push(input_part);
}
}
inputs_parts
.into_iter()
.map(|inputs| Plan::Union { inputs })
.collect()
}
Plan::ArrangeBy {
input,
forms: keys,
input_key,
input_mfp,
} => input
.partition_among(parts)
.into_iter()
.map(|input| Plan::ArrangeBy {
input: Box::new(input),
forms: keys.clone(),
input_key: input_key.clone(),
input_mfp: input_mfp.clone(),
})
.collect(),
}
}
}
}
impl<T> CollectionPlan for Plan<T> {
fn depends_on_into(&self, out: &mut BTreeSet<GlobalId>) {
match self {
Plan::Constant { rows: _ } => (),
Plan::Get {
id,
keys: _,
plan: _,
} => match id {
Id::Global(id) => {
out.insert(*id);
}
Id::Local(_) => (),
},
Plan::Let { id: _, value, body } => {
value.depends_on_into(out);
body.depends_on_into(out);
}
Plan::LetRec {
ids: _,
values,
body,
} => {
for value in values.iter() {
value.depends_on_into(out);
}
body.depends_on_into(out);
}
Plan::Join { inputs, plan: _ } | Plan::Union { inputs } => {
for input in inputs {
input.depends_on_into(out);
}
}
Plan::Mfp {
input,
mfp: _,
input_key_val: _,
}
| Plan::FlatMap {
input,
func: _,
exprs: _,
mfp: _,
input_key: _,
}
| Plan::ArrangeBy {
input,
forms: _,
input_key: _,
input_mfp: _,
}
| Plan::Reduce {
input,
key_val_plan: _,
plan: _,
input_key: _,
}
| Plan::TopK {
input,
top_k_plan: _,
}
| Plan::Negate { input }
| Plan::Threshold {
input,
threshold_plan: _,
} => {
input.depends_on_into(out);
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use mz_proto::protobuf_roundtrip;
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
#[cfg_attr(miri, ignore)] // unsupported operation: can't call foreign function `decContextDefault` on OS `linux`
fn available_collections_protobuf_roundtrip(expect in any::<AvailableCollections>() ) {
let actual = protobuf_roundtrip::<_, ProtoAvailableCollections>(&expect);
assert!(actual.is_ok());
assert_eq!(actual.unwrap(), expect);
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn get_plan_protobuf_roundtrip(expect in any::<GetPlan>()) {
let actual = protobuf_roundtrip::<_, ProtoGetPlan>(&expect);
assert!(actual.is_ok());
assert_eq!(actual.unwrap(), expect);
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(32))]
#[test]
fn plan_protobuf_roundtrip(expect in any::<Plan>()) {
let actual = protobuf_roundtrip::<_, ProtoPlan>(&expect);
assert!(actual.is_ok());
assert_eq!(actual.unwrap(), expect);
}
}
}