1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
//! Abomonation (spelling intentional) is a fast serialization / deserialization crate.
//!
//! Abomonation takes typed elements and simply writes their contents as binary.
//! It then gives the element the opportunity to serialize more data, which is
//! useful for types with owned memory such as `String` and `Vec`.
//! The result is effectively a copy of reachable memory.
//! Deserialization results in a shared reference to the type, pointing at the binary data itself.
//!
//! Abomonation does several unsafe things, and should ideally be used only through the methods
//! `encode` and `decode` on types implementing the `Abomonation` trait. Implementing the
//! `Abomonation` trait is highly discouraged; instead, you can use the [`abomonation_derive` crate](https://crates.io/crates/abomonation_derive).
//!
//! **Very important**: Abomonation reproduces the memory as laid out by the serializer, which will
//! reveal architectural variations. Data encoded on a 32bit big-endian machine will not decode
//! properly on a 64bit little-endian machine. Moreover, it could result in undefined behavior if
//! the deserialization results in invalid typed data. Please do not do this.
//!
//!
//! # Examples
//! ```
//! use abomonation::{encode, decode};
//!
//! // create some test data out of abomonation-approved types
//! let vector = (0..256u64).map(|i| (i, format!("{}", i)))
//! .collect::<Vec<_>>();
//!
//! // encode a Vec<(u64, String)> into a Vec<u8>
//! let mut bytes = Vec::new();
//! unsafe { encode(&vector, &mut bytes); }
//!
//! // decode a &Vec<(u64, String)> from &mut [u8] binary data
//! if let Some((result, remaining)) = unsafe { decode::<Vec<(u64, String)>>(&mut bytes) } {
//! assert!(result == &vector);
//! assert!(remaining.len() == 0);
//! }
//! ```
use std::mem; // yup, used pretty much everywhere.
use std::io::Write; // for bytes.write_all; push_all is unstable and extend is slow.
use std::io::Result as IOResult;
use std::marker::PhantomData;
use std::num::*;
pub mod abomonated;
/// Encodes a typed reference into a binary buffer.
///
/// # Safety
///
/// This method is unsafe because it is unsafe to transmute typed allocations to binary.
/// Furthermore, Rust currently indicates that it is undefined behavior to observe padding
/// bytes, which will happen when we `memmcpy` structs which contain padding bytes.
///
/// # Examples
/// ```
/// use abomonation::{encode, decode};
///
/// // create some test data out of abomonation-approved types
/// let vector = (0..256u64).map(|i| (i, format!("{}", i)))
/// .collect::<Vec<_>>();
///
/// // encode a Vec<(u64, String)> into a Vec<u8>
/// let mut bytes = Vec::new();
/// unsafe { encode(&vector, &mut bytes); }
///
/// // decode a &Vec<(u64, String)> from &mut [u8] binary data
/// if let Some((result, remaining)) = unsafe { decode::<Vec<(u64, String)>>(&mut bytes) } {
/// assert!(result == &vector);
/// assert!(remaining.len() == 0);
/// }
/// ```
///
#[inline]
pub unsafe fn encode<T: Abomonation, W: Write>(typed: &T, write: &mut W) -> IOResult<()> {
let slice = std::slice::from_raw_parts(mem::transmute(typed), mem::size_of::<T>());
write.write_all(slice)?;
typed.entomb(write)?;
Ok(())
}
/// Decodes a mutable binary slice into an immutable typed reference.
///
/// `decode` treats the first `mem::size_of::<T>()` bytes as a `T`, and will then `exhume` the
/// element, offering it the ability to consume prefixes of `bytes` to back any owned data.
/// The return value is either a pair of the typed reference `&T` and the remaining `&mut [u8]`
/// binary data, or `None` if decoding failed due to lack of data.
///
/// # Safety
///
/// The `decode` method is unsafe due to a number of unchecked invariants.
///
/// Decoding arbitrary `&[u8]` data can
/// result in invalid utf8 strings, enums with invalid discriminants, etc. `decode` *does*
/// perform bounds checks, as part of determining if enough data are present to completely decode,
/// and while it should only write within the bounds of its `&mut [u8]` argument, the use of invalid
/// utf8 and enums are undefined behavior.
///
/// Please do not decode data that was not encoded by the corresponding implementation.
///
/// In addition, `decode` does not ensure that the bytes representing types will be correctly aligned.
/// On several platforms unaligned reads are undefined behavior, but on several other platforms they
/// are only a performance penalty.
///
/// # Examples
/// ```
/// use abomonation::{encode, decode};
///
/// // create some test data out of abomonation-approved types
/// let vector = (0..256u64).map(|i| (i, format!("{}", i)))
/// .collect::<Vec<_>>();
///
/// // encode a Vec<(u64, String)> into a Vec<u8>
/// let mut bytes = Vec::new();
/// unsafe { encode(&vector, &mut bytes); }
///
/// // decode a &Vec<(u64, String)> from &mut [u8] binary data
/// if let Some((result, remaining)) = unsafe { decode::<Vec<(u64, String)>>(&mut bytes) } {
/// assert!(result == &vector);
/// assert!(remaining.len() == 0);
/// }
/// ```
#[inline]
pub unsafe fn decode<T: Abomonation>(bytes: &mut [u8]) -> Option<(&T, &mut [u8])> {
if bytes.len() < mem::size_of::<T>() { None }
else {
let (split1, split2) = bytes.split_at_mut(mem::size_of::<T>());
let result: &mut T = mem::transmute(split1.get_unchecked_mut(0));
if let Some(remaining) = result.exhume(split2) {
Some((result, remaining))
}
else {
None
}
}
}
/// Reports the number of bytes required to encode `self`.
///
/// # Safety
///
/// The `measure` method is safe. It neither produces nor consults serialized representations.
#[inline]
pub fn measure<T: Abomonation>(typed: &T) -> usize {
mem::size_of::<T>() + typed.extent()
}
/// Abomonation provides methods to serialize any heap data the implementor owns.
///
/// The default implementations for Abomonation's methods are all empty. Many types have no owned
/// data to transcribe. Some do, however, and need to carefully implement these unsafe methods.
///
/// # Safety
///
/// Abomonation has no safe methods. Please do not call them. They should be called only by
/// `encode` and `decode`, each of which impose restrictions on ownership and lifetime of the data
/// they take as input and return as output.
///
/// If you are concerned about safety, it may be best to avoid Abomonation all together. It does
/// several things that may be undefined behavior, depending on how undefined behavior is defined.
pub trait Abomonation {
/// Write any additional information about `&self` beyond its binary representation.
///
/// Most commonly this is owned data on the other end of pointers in `&self`. The return value
/// reports any failures in writing to `write`.
#[inline(always)] unsafe fn entomb<W: Write>(&self, _write: &mut W) -> IOResult<()> { Ok(()) }
/// Recover any information for `&mut self` not evident from its binary representation.
///
/// Most commonly this populates pointers with valid references into `bytes`.
#[inline(always)] unsafe fn exhume<'a,'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> { Some(bytes) }
/// Reports the number of further bytes required to entomb `self`.
#[inline(always)] fn extent(&self) -> usize { 0 }
}
/// The `unsafe_abomonate!` macro takes a type name with an optional list of fields, and implements
/// `Abomonation` for the type, following the pattern of the tuple implementations: each method
/// calls the equivalent method on each of its fields.
///
/// It is strongly recommended that you use the `abomonation_derive` crate instead of this macro.
///
/// # Safety
/// `unsafe_abomonate` is unsafe because if you fail to specify a field it will not be properly
/// re-initialized from binary data. This can leave you with a dangling pointer, or worse.
///
/// # Examples
/// ```
/// #[macro_use]
/// extern crate abomonation;
/// use abomonation::{encode, decode, Abomonation};
///
/// #[derive(Eq, PartialEq)]
/// struct MyStruct {
/// a: String,
/// b: u64,
/// c: Vec<u8>,
/// }
///
/// unsafe_abomonate!(MyStruct : a, b, c);
///
/// fn main() {
///
/// // create some test data out of recently-abomonable types
/// let my_struct = MyStruct { a: "grawwwwrr".to_owned(), b: 0, c: vec![1,2,3] };
///
/// // encode a &MyStruct into a Vec<u8>
/// let mut bytes = Vec::new();
/// unsafe { encode(&my_struct, &mut bytes); }
///
/// // decode a &MyStruct from &mut [u8] binary data
/// if let Some((result, remaining)) = unsafe { decode::<MyStruct>(&mut bytes) } {
/// assert!(result == &my_struct);
/// assert!(remaining.len() == 0);
/// }
/// }
/// ```
#[macro_export]
#[deprecated(since="0.5", note="please use the abomonation_derive crate")]
macro_rules! unsafe_abomonate {
($t:ty) => {
impl Abomonation for $t { }
};
($t:ty : $($field:ident),*) => {
impl Abomonation for $t {
#[inline] unsafe fn entomb<W: ::std::io::Write>(&self, write: &mut W) -> ::std::io::Result<()> {
$( self.$field.entomb(write)?; )*
Ok(())
}
#[inline] unsafe fn exhume<'a,'b>(&'a mut self, mut bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
$( let temp = bytes; bytes = self.$field.exhume(temp)?; )*
Some(bytes)
}
#[inline] fn extent(&self) -> usize {
let mut size = 0;
$( size += self.$field.extent(); )*
size
}
}
};
}
// general code for tuples (can't use '0', '1', ... as field identifiers)
macro_rules! tuple_abomonate {
( $($name:ident)+) => (
impl<$($name: Abomonation),*> Abomonation for ($($name,)*) {
#[allow(non_snake_case)]
#[inline(always)] unsafe fn entomb<WRITE: Write>(&self, write: &mut WRITE) -> IOResult<()> {
let ($(ref $name,)*) = *self;
$($name.entomb(write)?;)*
Ok(())
}
#[allow(non_snake_case)]
#[inline(always)] unsafe fn exhume<'a,'b>(&'a mut self, mut bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
let ($(ref mut $name,)*) = *self;
$( let temp = bytes; bytes = $name.exhume(temp)?; )*
Some(bytes)
}
#[allow(non_snake_case)]
#[inline(always)] fn extent(&self) -> usize {
let mut size = 0;
let ($(ref $name,)*) = *self;
$( size += $name.extent(); )*
size
}
}
);
}
impl Abomonation for u8 { }
impl Abomonation for u16 { }
impl Abomonation for u32 { }
impl Abomonation for u64 { }
impl Abomonation for u128 { }
impl Abomonation for usize { }
impl Abomonation for i8 { }
impl Abomonation for i16 { }
impl Abomonation for i32 { }
impl Abomonation for i64 { }
impl Abomonation for i128 { }
impl Abomonation for isize { }
impl Abomonation for NonZeroU8 { }
impl Abomonation for NonZeroU16 { }
impl Abomonation for NonZeroU32 { }
impl Abomonation for NonZeroU64 { }
impl Abomonation for NonZeroU128 { }
impl Abomonation for NonZeroUsize { }
impl Abomonation for NonZeroI8 { }
impl Abomonation for NonZeroI16 { }
impl Abomonation for NonZeroI32 { }
impl Abomonation for NonZeroI64 { }
impl Abomonation for NonZeroI128 { }
impl Abomonation for NonZeroIsize { }
impl Abomonation for f32 { }
impl Abomonation for f64 { }
impl Abomonation for bool { }
impl Abomonation for () { }
impl Abomonation for char { }
impl Abomonation for ::std::time::Duration { }
impl<T> Abomonation for PhantomData<T> {}
impl<T: Abomonation> Abomonation for Option<T> {
#[inline(always)] unsafe fn entomb<W: Write>(&self, write: &mut W) -> IOResult<()> {
if let &Some(ref inner) = self {
inner.entomb(write)?;
}
Ok(())
}
#[inline(always)] unsafe fn exhume<'a, 'b>(&'a mut self, mut bytes: &'b mut[u8]) -> Option<&'b mut [u8]> {
if let &mut Some(ref mut inner) = self {
let tmp = bytes; bytes = inner.exhume(tmp)?;
}
Some(bytes)
}
#[inline] fn extent(&self) -> usize {
self.as_ref().map(|inner| inner.extent()).unwrap_or(0)
}
}
impl<T: Abomonation, E: Abomonation> Abomonation for Result<T, E> {
#[inline(always)] unsafe fn entomb<W: Write>(&self, write: &mut W) -> IOResult<()> {
match self {
&Ok(ref inner) => inner.entomb(write)?,
&Err(ref inner) => inner.entomb(write)?,
};
Ok(())
}
#[inline(always)] unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut[u8]) -> Option<&'b mut [u8]> {
match self {
&mut Ok(ref mut inner) => inner.exhume(bytes),
&mut Err(ref mut inner) => inner.exhume(bytes),
}
}
#[inline] fn extent(&self) -> usize {
match self {
&Ok(ref inner) => inner.extent(),
&Err(ref inner) => inner.extent(),
}
}
}
tuple_abomonate!(A);
tuple_abomonate!(A B);
tuple_abomonate!(A B C);
tuple_abomonate!(A B C D);
tuple_abomonate!(A B C D E);
tuple_abomonate!(A B C D E F);
tuple_abomonate!(A B C D E F G);
tuple_abomonate!(A B C D E F G H);
tuple_abomonate!(A B C D E F G H I);
tuple_abomonate!(A B C D E F G H I J);
tuple_abomonate!(A B C D E F G H I J K);
tuple_abomonate!(A B C D E F G H I J K L);
tuple_abomonate!(A B C D E F G H I J K L M);
tuple_abomonate!(A B C D E F G H I J K L M N);
tuple_abomonate!(A B C D E F G H I J K L M N O);
tuple_abomonate!(A B C D E F G H I J K L M N O P);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE);
tuple_abomonate!(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF);
macro_rules! array_abomonate {
($size:expr) => (
impl<T: Abomonation> Abomonation for [T; $size] {
#[inline(always)]
unsafe fn entomb<W: Write>(&self, write: &mut W) -> IOResult<()> {
for element in self { element.entomb(write)?; }
Ok(())
}
#[inline(always)]
unsafe fn exhume<'a, 'b>(&'a mut self, mut bytes: &'b mut[u8]) -> Option<&'b mut [u8]> {
for element in self {
let tmp = bytes; bytes = element.exhume(tmp)?;
}
Some(bytes)
}
#[inline(always)] fn extent(&self) -> usize {
let mut size = 0;
for element in self {
size += element.extent();
}
size
}
}
)
}
array_abomonate!(0);
array_abomonate!(1);
array_abomonate!(2);
array_abomonate!(3);
array_abomonate!(4);
array_abomonate!(5);
array_abomonate!(6);
array_abomonate!(7);
array_abomonate!(8);
array_abomonate!(9);
array_abomonate!(10);
array_abomonate!(11);
array_abomonate!(12);
array_abomonate!(13);
array_abomonate!(14);
array_abomonate!(15);
array_abomonate!(16);
array_abomonate!(17);
array_abomonate!(18);
array_abomonate!(19);
array_abomonate!(20);
array_abomonate!(21);
array_abomonate!(22);
array_abomonate!(23);
array_abomonate!(24);
array_abomonate!(25);
array_abomonate!(26);
array_abomonate!(27);
array_abomonate!(28);
array_abomonate!(29);
array_abomonate!(30);
array_abomonate!(31);
array_abomonate!(32);
impl Abomonation for String {
#[inline]
unsafe fn entomb<W: Write>(&self, write: &mut W) -> IOResult<()> {
write.write_all(self.as_bytes())?;
Ok(())
}
#[inline]
unsafe fn exhume<'a,'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
if self.len() > bytes.len() { None }
else {
let (mine, rest) = bytes.split_at_mut(self.len());
std::ptr::write(self, String::from_raw_parts(mem::transmute(mine.as_ptr()), self.len(), self.len()));
Some(rest)
}
}
#[inline] fn extent(&self) -> usize {
self.len()
}
}
impl<T: Abomonation> Abomonation for Vec<T> {
#[inline]
unsafe fn entomb<W: Write>(&self, write: &mut W) -> IOResult<()> {
write.write_all(typed_to_bytes(&self[..]))?;
for element in self.iter() { element.entomb(write)?; }
Ok(())
}
#[inline]
unsafe fn exhume<'a,'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
// extract memory from bytes to back our vector
let binary_len = self.len() * mem::size_of::<T>();
if binary_len > bytes.len() { None }
else {
let (mine, mut rest) = bytes.split_at_mut(binary_len);
let slice = std::slice::from_raw_parts_mut(mine.as_mut_ptr() as *mut T, self.len());
std::ptr::write(self, Vec::from_raw_parts(slice.as_mut_ptr(), self.len(), self.len()));
for element in self.iter_mut() {
let temp = rest; // temp variable explains lifetimes (mysterious!)
rest = element.exhume(temp)?;
}
Some(rest)
}
}
#[inline]
fn extent(&self) -> usize {
let mut sum = mem::size_of::<T>() * self.len();
for element in self.iter() {
sum += element.extent();
}
sum
}
}
impl<T: Abomonation> Abomonation for Box<T> {
#[inline]
unsafe fn entomb<W: Write>(&self, bytes: &mut W) -> IOResult<()> {
bytes.write_all(std::slice::from_raw_parts(mem::transmute(&**self), mem::size_of::<T>()))?;
(**self).entomb(bytes)?;
Ok(())
}
#[inline]
unsafe fn exhume<'a,'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
let binary_len = mem::size_of::<T>();
if binary_len > bytes.len() { None }
else {
let (mine, mut rest) = bytes.split_at_mut(binary_len);
std::ptr::write(self, mem::transmute(mine.as_mut_ptr() as *mut T));
let temp = rest; rest = (**self).exhume(temp)?;
Some(rest)
}
}
#[inline] fn extent(&self) -> usize {
mem::size_of::<T>() + (&**self).extent()
}
}
// This method currently enables undefined behavior, by exposing padding bytes.
#[inline] unsafe fn typed_to_bytes<T>(slice: &[T]) -> &[u8] {
std::slice::from_raw_parts(slice.as_ptr() as *const u8, slice.len() * mem::size_of::<T>())
}
mod network {
use Abomonation;
use std::net::{SocketAddr, SocketAddrV4, SocketAddrV6, IpAddr, Ipv4Addr, Ipv6Addr};
impl Abomonation for IpAddr { }
impl Abomonation for Ipv4Addr { }
impl Abomonation for Ipv6Addr { }
impl Abomonation for SocketAddr { }
impl Abomonation for SocketAddrV4 { }
impl Abomonation for SocketAddrV6 { }
}